K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

\(\left\{210:\left[16+3.\left(6+3.2^2\right)\right]\right\}-3\)

\(=\left\{210:\left[16+3.\left(6+3.4\right)\right]\right\}-3\)

\(=\left\{210:\left[16+3.\left(6+12\right)\right]\right\}-3\)

\(=\left\{210:\left[16+3.18\right]\right\}-3\)

\(=\left\{210:\left[16+54\right]\right\}-3\)

\(=\left\{210:70\right\}-3\)

\(=3-3\)

\(=0\)

6 tháng 3 2023

Bài 1 :

A = 12 + 22 + 32 +....+n2 

A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)

A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n

A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n

A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]

A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]

A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)

A =(n+1)n/2 + 1/3.(n-1)n(n+1)

A = n(n+1)[1/2 + 1/3 .(n-1)]

A = n.(n+1) \(\dfrac{3+2n-2}{6}\)

A= n.(n+1)(2n+1)/6

Bài 2 : 

a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070

    (x+10 +x+1).{( x+10 - x -1): 1 +1):2  = 5070

    (2x + 11)10 : 2 = 5070 

     ( 2x + 11)5 = 5070

      2x+ 11 = 5070:5

         2x = 1014 - 11

        2x =   1003

          x = 1003 :2

          x = 501,5 

        b, 1 + 2 + 3 +...+x = 820

           ( x + 1)[ (x-1):1 +1] : 2 = 820

           (x +1).x = 820 x 2

           (x +1).x = 1640

            (x +1) .x = 40 x 41

                 x = 40 

 

 

6 tháng 5 2016

S=\(^{1^2}\)+\(^{2^2}\)+\(^{3^2}\)+....+ \(^{n^2}\)

S=1+ 2.(1+1) + 3.(2+1) +.....+ n(n-1 +1)

S=1 + 1.2 +2 + 2.3 + 3 +.......+ (n-1).n + n

S= (1 + 2 +3 +....+n) + (1.2 + 2.3 + 3.4 + ......+ (n-1)n )

S= \(\frac{n\left(n+1\right)}{2}\)    +    \(\frac{n\left(n+1\right)\left(n-1\right)}{3}\)

S=  \(\frac{3n\left(n+1\right)+2n\left(n+1\right)\left(n-1\right)}{6}\)

S= \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

15 tháng 10 2020

Làm sao mà (1.2+2.3+...+(n-1).n=n(n+1)(n-1)/3 được vậy bạn? Cái n(n+1)/2 thì mình hiểu rồi nhưng mà cái thứ hai là sao thì giảng rõ giùm mình với cảm ơn rất nhiều.

15 tháng 1 2017
  • Ta có: 1.3.5...(2n - 1) 
  • = { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
  • = (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
  • = {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
  • = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
  • => 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
  • Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
  • => [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
  • => [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
  • Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
  • Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
  • => [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 
15 tháng 1 2017

Ta có: 1.3.5...(2n - 1) 
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 

3 tháng 7 2015

ta tính các tổng theo công thức:

tổng có số các số hạng là: (số đầu - số cuối) : khoảng cách +1

giá trị của tổng: (số đầu+ cuối). số số hạng :2

áp dụng tính

a) số số hạng: (n-1):1+1=n-1

giá trị: \(\left(n+1\right)\left(n-1\right):2=\frac{\left(n^2-1\right)}{2}\)

b)  \(=\left(2n-1+1\right).\left(\frac{2n-1-1}{2}+1\right):2=2n\frac{2n}{2}:2=n^2\)

c) \(=\left(2n+2\right)\left(\frac{2n-2}{2}+1\right)=2\left(n+1\right)2n:2=2n\left(n+1\right)\)

5 tháng 10 2016

đúng rồi đó bn nhưng cách kafm giống lớp 8 quá