Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
240=2⁴.3.5
210=2.3.5.7
180=2².3².5
ƯCLN (240;210;180)=2.3.5=30
mỗi phần thưởng có số bút bi là
240:30=8 cây
Khi đó mỗi phần thưởng có số bút chì là
210:30=7 cây
Khi đó mỗi phần thưởng có số tập giấy là
180:30=6 tập
Đáp số..........
Làm hết bài dễ chết quá
Bài 5 nè
I x+3 I \(\ge\)0\(\Rightarrow\)A \(\ge\)4
Vậy min A = 4 khi x = -3
câu b t tự
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
d,
|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
2.Tìm x, y, z biết
a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
a)
(x+2)2+(y-3)2+(z-2)2=0
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\\\left(z-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=3\\z=2\end{cases}}}\)
Vậy...
b)
(x-3).y-x=5
xy - 3x - x = 5
xy - 4x = 5
x(y - 4) = 5 = 1.5 = (-1).(-5)
TH1:
\(\Rightarrow\hept{\begin{cases}x=1\\y-4=5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}x=5\\y-4=1\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=5\end{cases}}}\)
TH3:
\(\Rightarrow\hept{\begin{cases}x=-1\\y-4=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)
TH4:
\(\Rightarrow\hept{\begin{cases}x=-5\\y-4=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}}\)
Vậy...
Bài 1 :
a, Ta có : \(\left(-123\right)+\left|-13\right|+\left(-7\right)\)
= \(\left(-123\right)+13+\left(-7\right)=\left(-117\right)\)
b, Ta có : \(\left|-10\right|+\left|45\right|+\left(-\left|-455\right|\right)+\left|-750\right|\)
= \(10+45-455+750=350\)
c, Ta có : \(-\left|-33\right|+\left(-15\right)+20-\left|45-40\right|-57\)
= \(\left(-33\right)+\left(-15\right)+20-5-57=-90\)
d: =>x+5=0 và 3-y=0
=>x=-5 hoặc y=3
e: =>x-2=0 và y+1=0
=>x=2 và y=-1
bài 2) a) \(2\left(x+1\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\) vậy \(x=-1\)
b) \(x\left(x-2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) vậy \(x=0;x=2\)
c) \(\left(x-1\right)\left(x+7\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) vậy \(x=1;x=-7\)
d) \(\left(x+2\right)\left(x^2-9\right)=0\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x^2-9=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x^2=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\end{matrix}\right.\) vậy \(x=-2;x=3;x=-3\)
e) \(x^2\left(x-5\right)+2\left(x-5\right)=0\Leftrightarrow\left(x^2+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\) vậy \(x=5\)
bài 1) \(A=48+\left(-48-174\right)+\left|-74\right|=48-48-174+74=-100\)
\(B=\left(-123\right)+77+\left(-257\right)-23-43=-123+77-257-23-43=-369\)
\(C=\left(-57\right)+\left(-159\right)+47+169=-57-159+47+169=0\)
quá hợp lí