Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(sin^212^0+sin^278^0\right)+\left(sin^270^0+sin^230^0\right)-\left(sin^235^0+sin^255^0\right)\)
\(=\left(sin^212^0+cos^212^0\right)-\left(sin^235^0+cos^235^0\right)+\left(sin^270^0+sin^230^0\right)\)
\(=1-1+sin^270^0+\dfrac{1}{4}\)
\(=sin^270^0+\dfrac{1}{4}\)
Đặt \(2000=a\)
\(A=a^9\\ B=\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\\ B=\left(a^2-16\right)\left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2.a^2=a^9\\ B=\left(a-8\right)\left(a-6\right)\left(a-4\right)\left(a-2\right)a\left(a+2\right)\left(a+4\right)\left(a+6\right)\left(a+8\right)\\ C=\left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a\\ C< \left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2=a^9\\ D=\left(a-20\right)\left(a-15\right)\left(a-10\right)\left(a-5\right)a\left(a+5\right)\left(a+10\right)\left(a+15\right)\left(a+20\right)\\ D=\left(a^2-400\right)\left(a^2-225\right)\left(a^2-100\right)\left(a^2-25\right)a\\ D< \left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a< a.a^2.a^2.a^2=9\)
Vậy \(D< C< B< A\)
a: \(=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
b: \(=\sqrt{3}-1+2-\sqrt{3}=1\)
c: \(=2-\sqrt{3}+2-\sqrt{3}=4-2\sqrt{3}\)
a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=-\dfrac{2}{\sqrt{x}+1}\)
c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)
d: |B|=A
=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)
=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)
=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)
=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)
a: TXĐ: D=[0;+\(\infty\))\{1}
\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}-\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\cdot2}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
\(a,ĐK:x\ge0\\ x\ne1\\ B=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{2\left(1-\sqrt{x}\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{-1}{\sqrt{x}+1}\\ b,x=3\Leftrightarrow B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{1-\sqrt{3}}{2}\\ c,\left|B\right|=\dfrac{1}{2}\Leftrightarrow\left|\dfrac{-1}{\sqrt{x}+1}\right|=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{2}\left(\sqrt{x}+1\ge1>0\right)\\ \Leftrightarrow\sqrt{x}+1=2\Leftrightarrow x=1\left(tm\right)\)
a: Thay x=2 vào B, ta được:
\(B=\dfrac{2}{\sqrt{2}-1}=2\sqrt{2}+2\)