Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
\(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{3}{32}\)
\(=\left(\frac{75}{100}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{3}{32}\right)\)
\(=1+1+\frac{11}{16}\)
\(=2+\frac{11}{16}\) \(=\frac{43}{16}\)
a)\(3^5.5^7.45=3^5.5^7.3^2.5=3^7.5^8\)
b)\(2^8.4^5.9^9\)\(=2^8.2^{10}.9^9=2^{18}.9^9\)
c)\(\left(2^3.3^5.5^7\right)^{10}.12^{20}=2^{13}.3^{15}.5^{17}.12^{20}\)\(=2^{13}.3^{15}.5^{17}.2^{40}.3^{20}=2^{53}.3^{35}.5^{17}\)
d)\(\left(x^2y\right)^5.\left(x^2y^2\right)^7.\left(x.y^2\right)^6.x^3=x^{10}.y^5.x^{14}.y^{14}.x^6.y^{12}.x^3\)
\(=x^{33}.y^{31}\)
e)\(18^{20}.45^5.5^{25}.8^{10}=2^{20}.3^{40}.5^5.3^{10}.5^5.5^{25}.2^{30}\)
\(=2^{50}.3^{50}.5^{35}=6^{50}.5^{35}\)
f)\(2^7.3^8.4^9.9^8=2^7.3^8.2^{18}.3^{16}=2^{25}.3^{24}\)
\(a,4^{21}:16^5.\)
\(=4^{21}:\left(4^2\right)^5.\)
\(=4^{21}:4^{10}.\)
\(=4^{21-10}=4^{11}.\)
Vậy.....
\(b,32^8:4^{19}.\)
\(=\left(2^5\right)^8:\left(2^2\right)^{19}.\)
\(=2^{40}:2^{38}.\)
\(=2^{40-38}.\)
\(=2^2=4.\)
Vậy.....
\(c,27^{15}:9^{22}.\)
\(=\left(3^3\right)^{15}:\left(3^2\right)^{22}.\)
\(=3^{45}:3^{44}.\)
\(=3^{45-44}.\)
\(=3^1=3.\)
Vậy.....
\(d,25^{10}:125^6.\)
\(=\left(5^2\right)^{10}:\left(5^3\right)^6.\)
\(=5^{20}:5^{18}.\)
\(=5^{20-18}.\)
\(=5^2=25.\)
Vậy.....
~ Hok tốt!!! ~ :))
a, 421 : 165
= 421 : (42 )5
= 421 : 410
= 411
b, 328 : 419
= (25)8 : (22 )19
= 240 : 238
= 22
c, 2715 : 922
= (33 ) 15 : (32 )22
= 345 : 344
= 3
d, 2510 : 1256
= (52)10 : (53)6
= 520 : 518
= 52
1. A = (-2)(-3) - 5.|-5| + 125.\(\left(-\dfrac{1}{5}\right)^2\)
= 6 - 25 + 125.\(\dfrac{1}{25}\)
= -19 + 5
= -14
@Shine Anna
Bài 4:
a)Ta có: B= 23!+19!−15!
B=1.2.3.....11..23+1.2....11.19-1.2.....11.12.13.14.15
Vì 11 chia hết cho 11=>23! chia hết cho 11
19!chia hết cho 11
15! chia hết cho 11
1)
\(A=156+273+533+y\)
\(A=962+y\)
\(962⋮13\)
Để \(A⋮13\rightarrow y⋮13\)
\(A⋮̸13\rightarrow y⋮̸13\)
2)
\(A=1+3+3^2+...+3^{11}\)
* để A chia hết cho 13:
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)
\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)
* để A chia hết cho 40:
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)
\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)
3)
\(25^{24}-25^{23}\)
\(=25^{23}.25-25^{23}.1\)
\(=25^{23}.\left(25-1\right)\)
\(=25^{23}.24\)
\(=25^{23}.4.6⋮6\rightarrowđpcm\)
4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4
Tích của 5 số tự nhiên liên tiếp là :
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)
Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3
5 số tự nhiên liên tiếp đó chia hết cho 3;5;8
\(\Rightarrow⋮120\rightarrowđpcm\)
\(b,81^{13}:3^{35}.\)
\(=\left(3^4\right)^{13}:\left(3^1\right)^{35}.\)
\(=3^{52}:3^{35}.\)
\(=3^{52-35}=3^{17}.\)
Vậy.....
\(c,128^{18}:32^{23}.\)
\(=\left(2^7\right)^{18}:\left(2^5\right)^{23}.\)
\(=2^{126}:2^{115}.\)
\(=2^{126-115}.\)
\(=2^{11}=2048.\)
Vậy.....
~ Hok tốt!!! ~ =))
b) 12
c)317
d)211