K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Bài 1.

\(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{3}{32}\)

\(=\left(\frac{75}{100}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{3}{32}\right)\)

\(=1+1+\frac{11}{16}\)

\(=2+\frac{11}{16}\) \(=\frac{43}{16}\)

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

2 tháng 8 2017

 mik ko chép lại đề, mik làm luôn: 

a)  x - \(\frac{31}{36}=\frac{-13}{38}\)

x = \(\frac{-13}{18}+\frac{31}{36}\)

\(x=\frac{5}{36}\)

b)\(2-x-\frac{3}{7}=\frac{9}{-21}\)

\(\frac{11}{7}-x=\frac{3}{7}\)

x = \(\frac{11}{7}-\frac{3}{7}\)

x = 8/7

c) x + 3/11 = 23/44

x = 23/44 - 3/11

x = 1/4

d) \(\frac{1}{12}-x=\frac{-11}{9}\)

x = \(\frac{1}{12}+\frac{11}{9}\)

x = 47/36

e) \(x-\frac{2}{3}=\frac{-17}{3}\)

x= -17/3 + 2/3

x = -5 

f) \(x-\frac{1}{2}=\frac{11}{4}.\frac{3}{11}\)

x - 1/2 = 3/4

x = 3/4 + 1/2 

x = 5/4

g) \(2x+\frac{3}{8}=\frac{-21}{32}.\frac{4}{7}\)

2x + 3/8 = -3 / 8

2x = -3/8 - 3/8 

2x = -9/8

x = -9/8.1/2 

x = -9/16

h) x - \(\frac{x}{3}=\frac{3}{57}.\frac{19}{12}\)

x  - \(\frac{x}{3}=\frac{1}{12}\)

x = \(\frac{1}{12}+\frac{x}{3}\)

x = \(\frac{1+4x}{12}\)

=> 12x = 1+4x

12x - 4x = 1

8x = 1

x = 1/8 

2 tháng 8 2017

Trả lời nhanh gọn lẹ nhé, mình k cho :)

21 tháng 7 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)và 1

gọi

 \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)

VÌ \(\frac{2019}{2020}< 1\Rightarrow A< 1\)

VẬY \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}< 1\)

21 tháng 7 2020

1. a) P = 4 - ( x - 2 )32

( x - 2 )32 ≥ 0 ∀ x => - ( x - 2 )32 ≤ 0 ∀ x

=> 4 - ( x - 2 )32 ≤ 4 ∀ x

Dấu bằng xảy ra <=> x - 2 = 0 => x = 2

Vậy PMax = 4 khi x = 2

b) Q = 20 - | 3 - x |

| 3 - x |  ≥ 0 ∀ x => - | 3 - x | ≤ 0 ∀ x

=> 20 - | 3 - x |  ≤ 20 ∀ x

Dấu bằng xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3

c) C = \(\frac{5}{\left(x-3\right)^2+1}\)

Để C có GTLN => ( x - 3 )2 + 1 nhỏ nhất dương

=> ( x - 3 )2 + 1 = 1

=> ( x - 3 )2 = 0

=> x - 3 = 0 

=> x = 3

=> CMax = \(\frac{5}{\left(3-3\right)^2+1}=\frac{5}{1}=5\)khi x = 3