Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(12x=5y=20z\)
\(\implies\) \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{20}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{15}+\frac{1}{20}}=\frac{48}{\frac{1}{5}}=240\)
\(\implies\) \(\hept{\begin{cases}x=240.\frac{1}{12}\\y=240.\frac{1}{15}\\z=240.\frac{1}{20}\end{cases}}\) \(\implies\) \(\hept{\begin{cases}x=20\\y=16\\z=12\end{cases}}\)
Vậy \(x=20;y=16;z=12\)
a)\(\sqrt{x}.\left(\sqrt{x}-3\right)=0\)
\(\implies\) \(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-3=0\end{cases}}\) \(\implies\) \(\orbr{\begin{cases}x=0\\\sqrt{x}=3\end{cases}}\) \(\implies\) \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
Vậy \(x=0;x=9\)
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
=>\(\frac{\left(x+y+z\right)2}{x+y+z}=\frac{1}{x+y+z}\)
=> x+y+z=1/2
=> y+z=2x-2
=> x+z=2y-3
=>x+y=2x+5
=> 1/2-x=2x-3
=> x=5/6
=>1/2-y=2y-3
=> y=7/6
=> z=1/2-(7/6+5/6)=-3/2
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)
\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Xét:
\(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)
Ta có: \(\frac{x}{15}=\frac{y}{60}=\frac{z}{45}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)
\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\times75\Rightarrow15x=300\Rightarrow x=20\)
Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\times60\Rightarrow15y=240\Rightarrow y=16\)
Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\times45\Rightarrow15z=180\Rightarrow z=12\)
a)(x-1) \(^3\)=2 \(^3\)
x-1 =2
x =2+1
x =3