Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
Ta có
\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)
Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)
\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)
Ta có : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
mà \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y^2-z=2^2-\left(-3\right)=7\\y=2\\z=-3\end{cases}}\)
\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Do \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}\left[x-2^2+\left(-3\right)\right]^2=0\\y=2\\z=-3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}}\)
Vậy ...
\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)
\(\left(x-1\right)^2\ge0\)
\(\left(3x-y-3\right)^2\ge0\)
\(\left(y+z\right)^4\ge0\)
\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2=0;\left(3x-y-3\right)^2=0;\left(y+z\right)^4=0\)
- \(x-1=0\Rightarrow x=1\)
- \(3x-3-y=0\Rightarrow3\times1-3=y\Rightarrow y=0\)
- \(y+z=0\Rightarrow0+z=0\Rightarrow z=0\)
Vậy \(x=1;y=0;z=0\)
Chúc bạn học tốt ^^
\(|x|,|y|,|z|\)luôn \(\ge0\forall x,y,z\)
\(\Rightarrow|x|+|y|+|z|\ge0\)
mà \(|x|+|y|+|z|\le0\left(gt\right)\)
\(\Rightarrow|x|+|y|+|z|=0\)\(\Leftrightarrow x=y=z=0\)
Vậy \(x=y=z=0\)
tìm x,y,z thuộc Q biết
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Xét đẳng thức , ta thấy :
\(\left|x+\frac{3}{4}\right|\ge0\)
\(\left|y-\frac{1}{5}\right|\ge0\)
\(\left|x+y+z\right|\ge0\)
=> \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\) (đề bài)
=> \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=-\left(-\frac{3}{4}+\frac{1}{5}\right)=\frac{11}{20}\end{cases}}\)
Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0
=> x + 2 = 0
x = 0 - 2
x = -2
Câu 3: |x| + |y| + |z| = 0
Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0
=> |x| = 0, |y| = 0, |z| = 0
=> x = 0, y = 0, z = 0