\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

bài 1

[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]

=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0

=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0

Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0

=>x+2=0

=>x=-2

 

10 tháng 1 2016

Bài 1: x=-2

Bài 2:x=17

Bài 3:x=2014

y=2010

 

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

27 tháng 12 2014

Ta có\(\frac{1}{1\cdot3}\) +\(\frac{1}{3\cdot5}\)+\(\frac{1}{5\cdot7}\)+.....+\(\frac{1}{x\cdot\left(x+2\right)}\)=\(\frac{16}{34}\)

=> 2(\(\frac{1}{1\cdot3}\)+\(\frac{1}{3\cdot5}\)+\(\frac{1}{5\cdot7}\)+......+\(\frac{1}{x+\left(x+2\right)}\)) = \(\frac{16}{34}\)*2

=>  \(\frac{2}{1\cdot3}\)+\(\frac{2}{3\cdot5}\)+\(\frac{2}{5\cdot7}\)+.....+\(\frac{2}{x\cdot\left(x+2\right)}\)\(\frac{32}{34}\)

1-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+.....+\(\frac{1}{x}\)-\(\frac{1}{x+2}\)=\(\frac{32}{34}\)

1-\(\frac{1}{x+2}\)=\(\frac{32}{34}\)

\(\frac{1}{x+2}\)= 1-\(\frac{32}{34}\)

\(\frac{1}{x+2}\)\(\frac{1}{17}\)

=> x+2=17

x=17-2 

x=15

19 tháng 12 2015

=> \(2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(2.\left(1-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(1-\frac{1}{x+2}=\frac{4}{17}\)

=> \(\frac{1}{x+2}=\frac{13}{17}\)

=>\(x=-\frac{9}{13}\)

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
16 tháng 9 2020

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{7}\)

\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{16}{7}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{7}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{16}{7}\)

\(\Rightarrow\frac{1}{x+2}=-\frac{9}{7}\)

\(\Rightarrow-9\left(x+2\right)=7\)

\(\Rightarrow x+2=-\frac{7}{9}\)

\(\Rightarrow x=-\frac{25}{9}\)

Vậy \(x=-\frac{25}{9}\)

21 tháng 7 2019

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(5^{x+3}\left(5-3\right)=2.5^{11}\)

\(5^{x+3}.2=2.5^{11}\)

\(5^{x+3}=5^{11}\)

\(x+3=11\)

\(x=8\)

\(4^{x+3}-3.4^{x+1}=13.4^{11}\)

\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)

\(4^{x+1}.13=13.4^{11}\)

\(4^{x+1}=4^{11}\)

\(x+1=11\)

\(x=10\)