Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
A)0,25:(10,3-9,8)-3/4
=1/4:(103/10-49/5)-3/4
=1/4:1/2-3/4
=1/2-3/4
=2/4-3/4
=-1/4
B)-5/9.13/28-13/28.4/9
=-5/9-4/9.13/28
=-1.13/28
=-13/28
c)6/7+5/8:5-3/16
=6/7+1/8-3/16
=55/56-3/16
=89/112
d)-5/7.2/11+-5/7.9/11+1/5/7
=-5/7.(2/11+9/11)+12/7
=-5/7.1+12/7
=-5/7+12/7
=1
e)-7/12-8/15+11/20
=-67/60+11/20
=-17/30
f)-17/25.20/33+-17/25.13/33+-3/25
=-17/25.(20/33+13/33)-3/25
=-17/25.1-3/25
=-17/25-3/25
=-4/5
CHÚC BẠN HỌC TỐT...............
NẾU ĐÚNG THÌ TICK CHO MK VỚI NHA HELLO HELLO..........
a)\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có;
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2}{9}=\dfrac{x-3y+42}{4-3.3+9.21}=\dfrac{62}{184}=\dfrac{31}{92}\)
=>x=...;y=....
Bài 1:
\(a,\dfrac{x}{3}=\dfrac{y}{7}\) và \(x+y=20\)
\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.7=14\)
Vậy \(x=6\) và \(y=14\)
\(b,\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=6\)
\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\Rightarrow x=2.5=10\)
\(y=2.2=4\)
Vậy \(x=10\) và \(y=4\)
\(c,\dfrac{x}{7}=\dfrac{18}{14}\)
Từ tỉ lệ thức trên ta có:
\(14x=7.18\)
\(x=\dfrac{7.18}{14}\)
\(x=9\)
Vậy \(x=9\)
\(d,6:x=1\dfrac{3}{4}:5\)
\(6:x=\dfrac{7}{20}\)
\(x=6:\dfrac{7}{20}\)
\(x=\dfrac{120}{7}\)
Vậy \(x=\dfrac{120}{7}\)
\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x-y+z=8\)
\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.4=8\)
\(z=2.6=12\)
Vậy \(x=4;y=8;z=12\)
a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)
Từ đó suy ra x=1,5; y=3,5
b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)
Từ đó suy ra x=2,5; y=1
c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)
d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)
e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)
Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)
\(a)\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}\)
\(=\dfrac{18}{24}+\dfrac{12}{24}+\left(-\dfrac{5}{24}\right)\)
\(=\dfrac{18+12+\left(-5\right)}{24}\)
\(=\dfrac{25}{24}\)
\(b)\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)
\(=\dfrac{5}{7}.\dfrac{-2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)
\(=\dfrac{5}{7}\left(\dfrac{-2}{13}+\dfrac{-11}{13}+\dfrac{13}{13}\right)\)
\(=\dfrac{5}{7}.0=0\)
\(c)\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}\)
\(=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}\)
\(=2\dfrac{1}{2}\)
\(d)\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}\)
\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{38}{51}+\dfrac{306}{714}\)
\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{532}{714}+\dfrac{306}{714}\)
\(=\dfrac{1391}{714}\)
a)\(\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}=\dfrac{18}{24}+\dfrac{12}{24}-\dfrac{5}{24}=\dfrac{25}{24}\)
b)\(\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}=\dfrac{5}{7}\left(\dfrac{-2}{13}-\dfrac{11}{13}+1\right)=\dfrac{5}{7}.0=0\)
c)\(\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=2,5\)
d)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}=\dfrac{15}{34}+\left(\dfrac{1}{3}+\dfrac{38}{51}+\dfrac{3}{7}\right)=\dfrac{15}{34}+\dfrac{538}{357}=\dfrac{1391}{714}\)
3. Từ \(\dfrac{x-2}{27}=\dfrac{3}{x-2}\Rightarrow\left(x-2\right)^2=81\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm9\right)^2\\ \Rightarrow\left[{}\begin{matrix}x-2=-9\\x-2=9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=11\end{matrix}\right.\)
Vậy x = -7 hoặc x = 11
4. Từ \(\dfrac{2x+5}{9-2x}=\dfrac{2}{5}\)
\(\Rightarrow5\left(2x+5\right)=2\left(9-2x\right)\\ \Leftrightarrow10x+25=18-4x\\ \Leftrightarrow14x=-7\\ \Rightarrow x=-\dfrac{1}{2}\)
5. Từ \(\dfrac{x-7}{x+8}=\dfrac{x-8}{x+9}\)
\(\Rightarrow\left(x-7\right)\left(x+9\right)=\left(x-8\right)\left(x+8\right)\\ \Leftrightarrow x^2+2x-63=x^2-64\\ \Leftrightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
a, \(2,5:7,5=x:\dfrac{3}{5}\)
\(\Leftrightarrow x:\dfrac{3}{5}=2,5:7,5\)
=> \(x.7,5=\dfrac{3}{5}.2,5\) => \(x=\dfrac{1,5}{7,5}=\dfrac{1}{5}\)
b, \(2\dfrac{2}{3}:x=1\dfrac{7}{9}\)
=> \(x=2\dfrac{2}{3}:1\dfrac{7}{9}\)
=> \(x=\dfrac{3}{2}\)
c, \(\dfrac{5}{6}:x=20:3\)
=> \(x.20=\dfrac{5}{6}.3\) => \(x=\dfrac{2,5}{20}=\dfrac{1}{8}\)
3, Tìm x, biết:
a) 2,5 : 7,5 = x : \(\dfrac{3}{5}\)
=> \(x:\dfrac{3}{5}=\dfrac{1}{3}\)
=> \(x=\dfrac{1}{3}.\dfrac{3}{5}=>x=\dfrac{1}{5}\)
b) \(2\dfrac{2}{3}\) : x = \(1\dfrac{7}{9}\)
=> \(\dfrac{8}{3}:x=\dfrac{16}{9}\)
=> \(x=\dfrac{8}{3}:\dfrac{16}{9}=>x=\dfrac{3}{2}\)
c) \(\dfrac{5}{6}\) : x = 20 : 3
=> \(x=\dfrac{5}{6}:\dfrac{20}{3}=>x=\dfrac{1}{8}\)
a/ \(\dfrac{x+1}{2}=\dfrac{2x+3}{5}\)
\(\Leftrightarrow5\left(x+1\right)=2\left(2x+3\right)\)
\(\Leftrightarrow5x+5=4x+6\)
\(\Leftrightarrow5x-4x=6-5\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ...
b/ \(\left|x-1\right|+3\left|y+1\right|+\left|z+2\right|=0\)
Mà với \(\forall x;y;z\) ta có :
\(\left\{{}\begin{matrix}\left|x-1\right|\ge0\\3\left|y+1\right|\ge0\\\left|z+2\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\3\left|y+1\right|=0\\\left|z+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\z+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=-2\end{matrix}\right.\)
Vậy ...
c/ \(\dfrac{x-2}{4}=\dfrac{5-3x}{4}\)
\(\Leftrightarrow x-2=5-3x\)
\(\Rightarrow x+3x=5+2\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
Vậy ......
d/ \(\dfrac{x+2}{4}=\dfrac{4}{x+2}\)
\(\Leftrightarrow\left(x+2\right)\left(x+2\right)=16\)
\(\Leftrightarrow\left(x+2\right)^2=4^2=\left(-4\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy ...
e/ \(\dfrac{x-1}{5}=\dfrac{-20}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=-100\)
\(\Leftrightarrow\left(x-1\right)^2=-100\)
Lại có : \(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\) k tồn tại x
a) \(x-\dfrac{3}{5}=\dfrac{2}{7}\)
\(\Rightarrow x=\dfrac{2}{7}+\dfrac{3}{5}\)
\(\Rightarrow x=\dfrac{10}{35}+\dfrac{21}{35}\)
\(\Rightarrow x=\dfrac{31}{35}\)
b) \(x+\dfrac{20}{11\cdot13}+\dfrac{20}{13\cdot15}+...+\dfrac{20}{53\cdot55}=\dfrac{3}{11}\)
\(\Rightarrow x+10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)
\(\Rightarrow x+10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(\Rightarrow x+10\left(\dfrac{1}{11}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(\Rightarrow x+10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)
\(\Rightarrow x+\dfrac{40}{55}=\dfrac{3}{11}\)
\(\Rightarrow x=\dfrac{3}{11}-\dfrac{40}{55}\)
\(\Rightarrow x=\dfrac{-25}{55}=\dfrac{-5}{11}\)