Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
a)Có \(\left(x-2\right)^2\ge0;\left(y-3\right)^2=0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
b)\(\left(x-1\right)^{x+2}=0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
a) \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
b) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\left(x-1\right)^{x+2}\times1-\left(x-1\right)^{x+2}\times\left(x-1\right)^4=0\)
\(\left(x-1\right)^{x+2}\times[1-\left(x-1^4\right)]=0\)
TH 1: \(\left(x-1\right)^{x+2}=0\) TH 2: \(1-\left(x-1\right)^4=0\)
\(\Rightarrow x-1=0\) \(\left(x-1\right)^4=1\)
\(\Rightarrow x=1\) \(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy \(x\in[0;1;2]\)
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
câu 1:
f(-3) = 7
=> f(-3) = (a + 2) . (-3) + 2a + 5 = 7
=> -3a - 6 + 2a + 5 = 7
=> -1 - a = 7
=> -1 - 7 = a
=> a = -8
\(b,3x+x^2=0\\ \Rightarrow x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\\ c,\left(x-1\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1>0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\x>3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\end{matrix}\right.\)
Vậy 1<x<3
a: \(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -4\end{matrix}\right.\)
\(\Leftrightarrow\orbr{\begin{cases}x>3\\x< 2\end{cases}}\)
( x - 3 )( x - 2 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-3>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>2\end{cases}}\Leftrightarrow x>3\)
2. \(\hept{\begin{cases}x-3< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< 2\end{cases}}\Leftrightarrow x< 2\)
Vậy x > 3 hoặc x < 2