Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: (4x + 19) - (2x + 5) = 3a - 3b
=> 3a - 3b = 2x + 14
(2x + 14) - (2x + 5) = 3a - 3b - 3b
=> 9 = 3a - 2.3b = 3b.(3a-b - 2)
=> 9 chia hết cho 3b; 9 chia hết cho 3a-b - 2
Mà 3a-b - 2 chia 3 dư 1 và 3a-b - 2 > 0 do a > b; a;b thuộc N
=> 3b = 9 = 32; 3a-b - 2 = 1
=> b=2; 3a-b = 3
=> b=2; a-b=1
=> b=2;a=3
Thay vào đề bài ta có:
4x + 19 = 33 = 27
=> 4x = 27 - 19 = 8
=> x = 8 : 4 = 2
Vậy x = 2; a = 3; b = 2
4^x-1+1=65
4^x-1 =65-1
4^x-1 =64
4^x-1 =4^3
x-1 =3
x =3-1
x =2
Vậy,x= 2
4^x-1+1=65
4^x-1 =65-1
4^x-1 =64
4^x-1 =4^3
x-1 =3
x =3-1
x =2
Vậy,x= 2
a) Ta có 2006 n luôn chia hết cho 2( vì 2006 là số chẵn) và 2 chia hết cho 2
Do đó 2006n+2 chia hết cho 2
b)155+156=155(1+15)=155.16
Vậy 155+156 chia hết cho 16 ( vì có chứa thừa số 16)
\(A=2+2^2+2^3+...+2^{61}+2^{62}+2^{63}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{61}+2^{62}+2^{63}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{61}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{61}.7\)
\(A=\left(2+2^4+...+2^{61}\right).7\Rightarrow A⋮7\)
Vậy ...
Ta có:
\(A=2+2^2+2^3+...+2^{63}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{61}+2^{62}+2^{63}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+...+2^{61}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+...+2^{61}.7\)
\(\Rightarrow A=\left(2+...+2^{61}\right).7⋮7\)
\(\Rightarrow A⋮7\)
\(\Rightarrowđpcm\)
a) \(93+3\left(x-5\right)=3.5^2=75\\ =>3\left(x-5\right)=75-93=-18\\ =>x-5=\dfrac{-18}{3}=-6\\ =>x=-6+5=-1\)
b, \(\left(5x^3+2^2.11\right):3^2=5\\ < =>\left(5x^3+44\right):9=5\\ =>5x^3+44=5.9=45\\ =>5x^3=45-44=1\\ =>x^3=\dfrac{1}{5}\\ =>x=\sqrt[3]{\dfrac{1}{5}}\)
\(3^1+3^2+3^3+3^4+3^5+...+\)\(3^{2012}\)
\(=(3^1+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+\)\((\)\(3^{2009}\)\(+\)\(3^{2010}\)\(+\)\(3^{2011}\)\(+\)\(3^{2012}\)\()\)
\(=1(3^1+3^2+3^3+3^4)+4(3^1+3^2+3^3+3^4)+...+2008(3^1+3^2+3^3+3^4)\)
\(=(1+4+...+2008). (3^1+3^2+3^3+3^4)\)
\(=Q.120\)
\(\Rightarrow\) Tổng \(3^1+3^2+3^3+3^4+3^5+...+\)\(3^{2012}\) \(⋮\) \(120\)
31 + 32 + 33+ 34 + 35 + … + 32012
= (31 + 32 + 33+ 34) + (35 + 36 + 37 + 38) + ... + (32009 + 32010 + 32011 + 32012)
= 1(31 + 32 + 33+ 34) + 34(31 + 32 + 33+ 34) + ... + 32008(31 + 32 + 33+ 34)
= (1 . 120) + (34 . 120) + ... + (32008 . 120)
= (1 + 34 + ... + 32008) . 120
= 120 ⋮ 120
⇒ Tổng 31 + 32 + 33+ 34 + 35 + … + 32012 chia hết cho 120
5\(^{x+1}\) - 5\(^x\) = 2.28 + 8
5\(^x\).(5 - 1) = 520
5\(^x\).4 = 520
5\(^x\) = 520 : 4
5\(^x\) = 130
Với \(x\) = 0 ⇒ 5\(^x\) = 50 = 1 < 130 (loại)
Với \(x\) > 0 ⇒ 5\(^x\) = \(\overline{...5}\) \(\ne\) 130 (loại)
Vậy \(x\) \(\in\) \(\varnothing\)
\(5^{x+1}-5^x=2.2^8+8\\ 5^x\left(5-1\right)=512+8\\ 5^x.4=520\\ 5^x=\dfrac{520}{4}=130\)
Em xem lại đề