Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dài đấy :))
a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)
\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)
\(\Leftrightarrow\left|x-1\right|+8=9\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)
c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))
\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)
\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)
\(\Leftrightarrow\left(x-5\right)^2=36\)
\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)
d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)
\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)
\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)
\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)
Vậy ta xét hai trường hợp sau :
1. \(x\ge-\frac{3}{16}\)
(*) <=>\(7x-2=4x+\frac{3}{4}\)
\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)
\(\Leftrightarrow3x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)
2. \(x< -\frac{3}{16}\)
(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)
\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)
\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)
\(\Leftrightarrow11x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)
Vậy x = 11/12
e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)
\(\Leftrightarrow x+1=4040\)
\(\Leftrightarrow x=4039\)
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
a, Cho R(x)=0
\(\Rightarrow\)\(\frac{2}{3}x+\frac{1}{5}=0\)
\(\Rightarrow\frac{2}{3}x=-\frac{1}{5}\)
\(\Rightarrow x=-\frac{3}{10}\)
Vậy x=\(-\frac{3}{10}\)là nghiệm của R(x)
b,Cho C(x)=0
\(\Rightarrow-4x^2+8x\)=0
\(\Rightarrow-4x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-4x=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy C(x) có nghiệm x= 0 hoặc x=2
Câu e) bạn làm sai rồi nhé, nghiệm phải là \(x=3\) và \(x=-3\) nhé bạn.