\(4x^2-7x+3\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

a) \(4x^2-7x+3=4x^2-4x-\left(3x-3\right)\)

\(=4x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(4x-3\right)\)

Cho đa thức trên bằng 0 và tự tìm nghiệm:D

b)\(3x^2-7x+4=3x^2-3x-4x+4\)

\(=3x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(3x-4\right)\)

Cho đa thức trên bằng 0 và tự tìm nghiệm:D

c) \(5x^2+7x+2=5x^2+5x+2x+2=5x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(5x+2\right)\)

Cho đa thức trên bằng 0 và tự tìm nghiệm:D

d) \(6x^2-5x+1=6x^2-3x-2x+1=3x\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(3x-1\right)\)

Cho đa thức trên bằng 0 và tự tìm nghiệm:D

e) Tương tự

f)\(3x^2-6x-x+2=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)

Cho đa thức trên bằng 0 và tự tìm nghiệm:D

11 tháng 8 2019

a) \(4x^2-7x+3\)

\(=4x^2-4x-3x+3\)

\(=4x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(4x-3\right)\left(x-1\right)\)

b) \(3x^2-7x+4\)

\(=3x^2-3x-4x+4\)

\(=3x\left(x-1\right)-4\left(x-1\right)\)

\(=\left(3x-4\right)\left(x-1\right)\)

c)\(5x^2+7x+2\)

\(=5x^2+5x+2x+2\)

\(=5x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(5x+2\right)\left(x+1\right)\)

d) \(6x^2-5x+1\)

\(=6x^2-3x-2x+1\)

\(=3x\left(2x-1\right)-\left(2x-1\right)\)

\(=\left(3x-1\right)\left(2x-1\right)\)

e) \(12x^2-x-6\)

\(=12x^2-9x+8x-6\)

\(=3x\left(4x-3\right)+2\left(4x-3\right)\)

\(=\left(3x+2\right)\left(4x-3\right)\)

f) \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(3x-1\right)\left(x-2\right)\)

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)

27 tháng 11 2016

a)\(4x^2-7x-2=0\Leftrightarrow4x^2+x-8x-2=0\Leftrightarrow x\left(4x+1\right)-2\left(4x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\4x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-\frac{1}{4}\end{array}\right.\)

b)\(3x^2+10x+3=0\Leftrightarrow3x^2+9x+x+3=0\Leftrightarrow3x\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{3}\\x=-3\end{array}\right.\)

c)\(x^2-x-20=0\Leftrightarrow x^2+4x-5x-20=0\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-5=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=-4\end{array}\right.\)

27 tháng 11 2016

d)\(6x^2+7x-3=0\Leftrightarrow6x^2-2x+9x-3=0\Leftrightarrow2x\left(3x-1\right)+3\left(3x-1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x-1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{1}{3}\end{array}\right.\)

e)\(10x^2-14x-12=0\Leftrightarrow2\left(5x^2-7x-6\right)=0\Leftrightarrow5x^2-7x-6=0\)

\(\Leftrightarrow5x^2+3x-10x-6=0\Leftrightarrow x\left(5x+3\right)-2\left(5x+3\right)=0\Leftrightarrow\left(x-2\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-\frac{3}{5}\end{array}\right.\)

16 tháng 6 2020

a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8

g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6

f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6

                 = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )

                 = 4x2 - x + 2

g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )

                = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8

               = ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )

                = 2x5 + 14x4 + 4x3 + 2x2 -9x - 14

16 tháng 6 2020

Đặt H(x) = g(x) + f(x)

=> H(x) = 4x2 - x + 2

H(x) = 0 <=> 4x2 - x + 2 = 0

              <=> x(4x - 1) = -2

x-1-212
4x-121-2-1
x1/41/2-1/40
 loạiloạiloạiloại

=> Không có giá trị x thỏa mãn 

Vậy H(x) vô nghiệm

Mình chỉ biết làm thế này thôi

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$

$=6x^5-2x^4-4x^3+3x$

$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$

$=-6x^5+2x^4+4x^3+4x^2-3x-1$

b)

$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$

$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$

$=213$

c)

$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=4x^2-1$

$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=12x^5-4x^4-8x^3-4x^2+6x+1$

d)

$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$

$\Leftrightarrow x=\pm \frac{1}{2}$

Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$

14 tháng 4 2018

Giải:

a) Để đa thức có nghiệm thì

\(x^2-4x=0\)

\(\Leftrightarrow\left(x-4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy ...

b) Để đa thức có nghiệm thì

\(\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)

Vậy ...

c) Để đa thức có nghiệm thì

\(\left(x-1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)

Vậy ...

Các ý còn lại làm tương tự.

14 tháng 4 2018

a) \(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

...

..

f) \(\Leftrightarrow x^2+\dfrac{7}{2}x+\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{7}{4}x\right)+\left(\dfrac{7}{4}x+\dfrac{7.7}{4.4}\right)+\dfrac{5}{2}-\dfrac{49}{16}=0\)

\(\Leftrightarrow x\left(x+\dfrac{7}{4}\right)+\dfrac{7}{4}\left(x+\dfrac{7}{4}\right)=\dfrac{49-5.8}{16}=\dfrac{9}{16}\)

\(\Leftrightarrow\left(x+\dfrac{7}{4}\right)^2=\left(\dfrac{3}{4}\right)^2\)

\(\left|x+\dfrac{7}{4}\right|=\dfrac{3}{4}\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}-\dfrac{3}{4}=\dfrac{-5}{2}\\x=-\dfrac{7}{4}+\dfrac{3}{4}=-1\end{matrix}\right.\)

6 tháng 8 2019

\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)

6 tháng 8 2019

\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)