Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Bài 4:
a)Ta có: B= 23!+19!−15!
B=1.2.3.....11..23+1.2....11.19-1.2.....11.12.13.14.15
Vì 11 chia hết cho 11=>23! chia hết cho 11
19!chia hết cho 11
15! chia hết cho 11
\(4)\)
\(\dfrac{-\left(-x\right)}{5}-\dfrac{2}{10}=\dfrac{1}{-5}-\dfrac{7}{50}\)
\(\Leftrightarrow\dfrac{x}{5}-\dfrac{2}{10}=\dfrac{1}{-5}-\dfrac{7}{50}\)
\(\dfrac{2x}{10}-\dfrac{2}{10}=\dfrac{-10}{50}-\dfrac{7}{50}\)
\(\Leftrightarrow\dfrac{2x-2}{10}=\dfrac{-10-7}{50}\)
\(\dfrac{2x-2}{10}=\dfrac{-17}{50}\)
\(\Leftrightarrow50\left(2x-2\right)=-17.10\)
\(100x-100=-170\)
\(100x=-170+100=-70\)
\(x=-70:100=\dfrac{-7}{10}\)
\(\dfrac{x+1}{5}=\dfrac{7}{x-1}\)
\(\left(x+1\right)\left(x-1\right)5.7\)
\(x\left(x-1\right)+1\left(x-1\right)=35\)
\(x^2-x+x-1=35\)
\(x^2-1=35\)
\(x^2=36\)
\(\Leftrightarrow x=\left\{\pm6\right\}\)
bạn có thể giải đc các bài còn lại k ? K phải mk ép bạn đâu nhưng nếu bạn lm đc thì giúp mk nha
1.
A=\(\dfrac{3\left|x\right|+2}{\left|x\right|-5}=\dfrac{3\left|x\right|-15+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)}{\left|x\right|-5}+\dfrac{17}{\left|x-5\right|}=3+\dfrac{17}{\left|x\right|-5}\)
Để A \(\in\)Z thì \(\left|x\right|-5\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có :
\(\left|x\right|-5=-17\Rightarrow\left|x\right|=-12\left(KTM\right)\)
\(\left|x\right|-5=-1\Rightarrow\left|x\right|=4\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\left|x\right|-5=1\Rightarrow\left|x\right|=6\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(\left|x\right|-5=17\Rightarrow\left|x\right|=32\Rightarrow\left[{}\begin{matrix}x=32\\x=-32\end{matrix}\right.\)
Vậy để A \(\in\)Z thì x \(\in\) {-32;-6;-4;4;6;32}
\(1.a.\frac{x}{7}=\frac{6}{21}=\frac{6:3}{21:3}=\frac{2}{7}\Rightarrow x=2\\ b.\frac{-5}{y}=\frac{20}{28}=\frac{20:\left(-4\right)}{28:\left(-4\right)}=\frac{-5}{-7}\Rightarrow y=-7\)
\(2.a.\frac{a}{-b}=\frac{a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left(a.1\right)}{-\left[-\left(b.1\right)\right]}=\frac{-a}{b}\\ b.\frac{-a}{-b}=\frac{-a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left[-\left(a.1\right)\right]}{-\left[-\left(b.1\right)\right]}=\frac{a}{b}\)
\(3.\frac{3}{-4}=\frac{-3}{4}\\ \frac{-5}{-7}=\frac{5}{7}\\ \frac{2}{-9}=\frac{-2}{9}\\ \frac{-11}{-10}=\frac{11}{10}\)
\(4.\frac{3}{6}=\frac{2}{4}\\ \frac{6}{3}=\frac{4}{2}\\ \frac{2}{3}=\frac{4}{6}\\ \frac{3}{2}=\frac{6}{4}\)
Bài 1:
a, \(\frac{x}{7}\)=\(\frac{6}{21}\)⇒x.21=6.7⇒x.21=42⇒x=2
b,\(\frac{-5}{y}=\frac{20}{28}\)⇒-5.28= 20.y⇒-140=20.y⇒y =-7
Bài 2:
a, \(\frac{a}{-b}\)= \(\frac{a.\left(-1\right)}{-b.\left(-1\right)}\)=\(\frac{-a}{b}\)
b, \(\frac{-a}{-b}=\frac{-a.\left(-1\right)}{-b.\left(-1\right)}=\frac{a}{b}\)
Bài 3:
1,\(\frac{3}{-4}=\frac{-3}{4}\)
2,\(\frac{-5}{-7}=\frac{5}{7}\)
3,\(\frac{2}{-9}=\frac{-2}{9}\)
4,\(\frac{-11}{-10}=\frac{11}{10}\)
Bài 4 :
\(\frac{3}{6}=\frac{2}{4}\) ;
\(\frac{6}{3}=\frac{4}{2}\);
\(\frac{3}{2}=\frac{6}{4}\);
\(\frac{2}{3}=\frac{4}{6}\).
=="
Câu 1:
A - B = \(1.2+2.3+...+98.99-1^2-...-98^2\)
\(=1\left(2-1\right)+2\left(3-2\right)+...+98\left(99-98\right)\)
\(=1+2+...+98\)
\(=99.49=4851\)
Câu 2:
a, \(A=5+5^2+...+5^{100}\)
\(5A=5^2+5^3+...+5^{101}\)
\(4A=5A-A=\left(5^2+5^3+...+5^{101}\right)-\left(5+5^2+5^{100}\right)\)
\(4A=5^{101}-5\Leftrightarrow4a+5=5^{101}\)
Lại có 4a+5 = 5^n => n = 101.
b,Gọi ước nguyên tố chung của tử và mẫu là d.
=> \(18n+3⋮d\) => \(7\left(18n+3\right)⋮d\)
=> \(24n+7⋮d\)=> \(6\left(24n+7\right)⋮d\)
=> \(6\left(24n+7\right)-7\left(18n+3\right)⋮d\)
\(\Leftrightarrow21⋮d\Rightarrow d=\left\{3;7\right\}\)
Với d = 3. \(21n+7⋮̸3\)
Với d = 7 => \(18n+3-21⋮d\Leftrightarrow18n-18⋮d\)
\(\Leftrightarrow18\left(n-1\right)⋮d\)\(\Rightarrow n-1⋮d\Leftrightarrow n=7k-1\)