Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1; đề thiếu bn ơi
bài 2 ;
s =-a+b+c-c+b+a-a-b
s= b-a=-(a-b) (a>b, a-b>0)
/s/=a-b
Bài 1 :
a, Rút gọn :
A = ( - a - b + c ) - ( - a - b - c )
= - a - b + c + a + b + c
= 2c
b, Thay c = - 2 vào biểu thức A = 2c
Ta được : A = 2 x ( - 2 ) = - 4
Bài 3 : Ta có : A + B = a + b - 5 + ( - b - c + 1 )
= a + b - 5 - b - c + 1
= a - c - 4
C - D = b - c - 4 - ( b - a )
= b - c - 4 - b + a
= a - c - 4
=> A + B = C - D ( đpcm )
a) \(\text{A : -a+b-c+a+b+c=2b}\)
b)Thay b=-1 vào A=>2 x ( -1)=-2
a, 2b
b,-2
k minh dung nhe ban minh se k cho ban nao k minh
Bài 1: \(3\left(x-2\right)-2\left(x+1\right)=3\)
\(\Leftrightarrow3x-6-2x-2=3\)
\(\Leftrightarrow x=11\)
Vậy x = 11
Bài 2: x + 11 chia hết cho x-2
<=> (x-2)+13 chia hết cho x-2
<=> 13 chia hết cho x-2
<=> x-2 thuộc Ư(13) = {-1;1;13;-13}
Ta lập bảng:
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
Vậy x = {-11;1;3;15}
b) 2x+11 chia hết cho x-1
<=> 2(x-1)+9 chia hết cho x-1
Vì 2(x-1) đã chia hết cho x-1
=> 9 phải chia hết cho x-1
<=> x-1 thuộc Ư(9)={1;-1;3;-3;9;-9}
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
Vậy x = {-8;-2;0;2;4;10}
Bài 3:
a) a.(b-2)=5=1.5=5.1=(-5).(-1)=(-1).(-5)
a | 1 | 5 | -1 | -5 |
b-2 | 5 | 1 | -5 | -1 |
b | 7 | 3 | -3 | 1 |
Vậy (a;b) = (1;7) ; (5;3) ; (-1;-3) ; (-5;1)
b) Tương tự
bài 1 : \(3.\left(x-2\right)-2.\left(x+1\right)=3\)
\(=>3x-6-2x-2=3\)
\(=>x=3+6+2=11\)
bài 2 :
a,\(x+11⋮x-2\)
\(=>x-2+13⋮x-2\)
\(Do:x-2⋮x-2\)
\(=>13⋮x-2\)
\(=>x-2\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-11;1;3;15\right\}\)
b,\(2x+11⋮x-1\)
\(=>x.\left(x-1\right)+13⋮x-1\)
\(Do:x.\left(x-1\right)⋮x-1\)
\(=>13⋮x-1\)
\(=>x-1\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-12;0;2;14\right\}\)
Bài 1: |x − 1| + |x + 2| = x − 3 (*)
Xét x < - 2 thì phương trình (*) có dạng:
(1 - x) + ( - x - 2 ) = x - 3
<=> - 2x - 1 = x - 3
<=> 3x = 2 <=> \(x = {{2} \over 3}\)( Loại)
Xét - 2 ≤ x ≤ 1 thì phương trình (*) có dạng:
(1 - x ) + ( x + 2 ) = x - 3
<=> x - 3 = 3
<=> x = 6 ( Loại )
Xét x > 1 phương trình (*) có dạng:
x - 1 + x + 2 = x - 3
<=> 2x + 1 = x - 3
<=> x = - 4 ( Loại)
Vậy phương trình vô nghiệm