\(\dfrac{3}{2}\)x2 + x + 1

b) R = x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Bài 1:

a ) \(Q=\dfrac{3}{2}x^2+x+1=\dfrac{3}{2}\left(x^2+\dfrac{2}{3}x+\dfrac{2}{3}\right)=\dfrac{3}{2}\left(x^2+\dfrac{2}{3}x+\dfrac{1}{9}+\dfrac{5}{9}\right)=\dfrac{3}{2}\left[\left(x+\dfrac{1}{3}\right)^2+\dfrac{5}{9}\right]=\dfrac{3}{2}\left(x+\dfrac{1}{3}\right)^2+\dfrac{5}{6}\ge\dfrac{5}{6}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy Min Q là : \(\dfrac{5}{6}\Leftrightarrow x=-\dfrac{1}{3}\)

b ) \(R=x^2+2y^2+2xy-2y=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy Min R là : \(-1\Leftrightarrow x=-1;y=1\)

Bài 2 :

a ) \(Q=2x-2-3x^2\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{2}{3}\right)\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}+\dfrac{5}{9}\right)\)

\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{5}{9}\right]\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{5}{3}\le-\dfrac{5}{3}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy Max Q là : \(-\dfrac{5}{3}\Leftrightarrow x=\dfrac{1}{3}\)

b ) \(2-x^2-y^2-2\left(x+y\right)\)

\(=2-x^2-y^2-2x-2y\)

\(=-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+4\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+4\le4\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=-1\)

Vậy Max của b/t trên là : \(4\Leftrightarrow x=-1\)

c ) \(7-x^2-y^2-2\left(x+y\right)\)

\(=7-x^2-y^2-2x-2y\)

\(=-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+9\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=-1\)

Vậy Max của b/t trên là : \(9\Leftrightarrow x=y=-1\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

21 tháng 12 2017

câu a hình như sai đề rồi bạn ạ

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

29 tháng 1 2019

a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)

=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)

\(=3x^2y-2xy^2-5xy\)

b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)

=\(\dfrac{2y+5y}{x-2}\)

=\(\dfrac{7y}{x-2}\)

c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)

\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)

=\(\dfrac{x\left(y-3x\right)}{3x-y}\)

=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)

=-x

d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)

=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)

=\(\dfrac{1}{6}\)

a; \(=x^5-2x^4-x^3-x^3-x^2=x^5-2x^4-2x^3-x^2\)

b: \(=2x^3-6x^2+x^2-3x+x-3\)

\(=2x^3-5x^2-2x-3\)

c: \(=6x^3y^2-3x^3+3x^2-2x^2y^3+x^2y-xy\)

d: \(=x^3-x^3y+x^3y-x^2y^2+xy^3-y^4\)

\(=x^3-x^2y^2+xy^3-y^4\)

26 tháng 6 2018

2.

a. Ta có: x + y = 5 ⇒ x = 5 - y

Thay vào A ta được:

\(A=3\left(5-y\right)^2+3y^2-2y+6\left(5-y\right).y-100\)

\(A=75-30y+3y^2+3y^2-2y+30y-6y^2-100\)

\(A=75-100=-25\)

b. Ta có: x - y = 7 ⇒ x = 7 + y

Thay x = 7 + y vào A ta được:

\(A=\left(7+y\right)\left(7+y+2\right)+y\left(y-2\right)-2\left(7+y\right).y+37\)

\(A=y^2+16y+63+y^2-2y-14y-2y^2+37\)

\(A=100\)

c. Ta có: x + 2y = 5 ⇒ x = 5 - 2y

Thay vào A ta có:

\(A=\left(5-2y\right)^2+4y^2-2\left(5-2y\right)+10+4\left(5-2y\right).y-4y\)

\(A=25-20y+4y^2+4y^2-19+4y+10+20y-8y^2-4y\)

\(A=16\)