Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.
Áp dụng BĐT BCS , ta có
\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)
\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)
Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5
2/ Áp dụng bđt AM-GM dạng mẫu số ta được
\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)
\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)
Vậy ......................................
Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)
Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)
Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)
Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)
Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)
Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)
Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)
Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)
Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)
Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)
Vậy \(n+M=\frac{171}{2}\)
\(P=\sqrt{6\left(x+y\right)+9}+\sqrt{2}.\sqrt{51-6\left(x+y\right)}\)
\(P\le\sqrt{\left(1+2\right)\left[6\left(x+y\right)+9+51-6\left(x+y\right)\right]}=6\sqrt{5}\)
\(P_{max}=6\sqrt{5}\) khi \(x+y=\frac{11}{6}\)
Bài này là bài thi vào lớp 10 hả
Dễ thôi
Ta sẽ C/m:
\(\dfrac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}\ge2x+y-\dfrac{1}{2}\)
\(\Leftrightarrow\left(2xy-6x-3y+2\right)^2\ge0\) ( đúng )
C/m tương tự ta được: \(P\ge-1\). Vậy GTNN của P là -1 khi \(x=y=\dfrac{9+\sqrt{65}}{4}\) hoặc \(x=y=\dfrac{9-\sqrt{65}}{4}\)
bài 1 bạn có thể dùng đạo hàm giải sẽ dễ hơn, nhưng mà thì hk ngta k cho dùng nên ta giải cách cổ điểm nhé!
A = \(\frac{2x^2-4x+4+3}{x^2-2x+2}\)= \(2+\frac{3}{x^2-2x+1+1}\)= \(2+\frac{3}{\left(x-1\right)^2+1}\)
Ta có (x - 1)2 + 1 ≥ 1 (vì (x - 1)2 ≥ 0 )
nên \(\frac{1}{\left(x-1\right)^2+1}\)≤ 1 (nghịch đảo đổi chiều của bpt)
⇔ \(\frac{3}{\left(x-1\right)^2+1}\le3\)
Vậy Amax= 5 khi x = 1
bài 2) ta có x +y =2 ⇔ y = 2-x thế vào pt r giải ra
câu nàu mình chỉ cho bạn cần thôi, còn cá bắt đc hay không phụ thuộc vào bạn