Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(a-b\right)\cdot\left(b-c\right)}-\frac{1}{\left(a-c\right)\cdot\left(b-c\right)}-\frac{1}{\left(a-b\right)\cdot\left(a-c\right)}\)
\(=\frac{a-c-\left(a-b\right)-\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a-c-a+b-b+c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
\(\frac{1}{\left(a-b\right).\left(b-c\right)}-\frac{1}{\left(a-c\right).\left(b-c\right)}-\frac{1}{\left(a-b\right).\left(a-c\right)}\)
=\(\frac{a-c}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{a-b}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{b-c}{\left(a-b\right).\left(b-c\right).\left(c-a\right)}\)
=\(\frac{\left(a-c\right)-\left(a-b\right)-\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
=\(\frac{a-c-a+b-b+c}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
=\(\frac{\left(a-a\right)+\left(b-b\right)+\left(c-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
=\(\frac{0}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
=0
Đặt
\(\Rightarrow\hept{\begin{cases}x=a-b\\y=a-c\\z=b-c\end{cases}}\)
Ta được
\(B=\frac{1}{axy}+\frac{1}{bxz}+\frac{1}{cyz}=\frac{bcz-acy+abx}{abcxyz}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-b+b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-b\right)-ac\left(b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{c\left(b-c\right)\left(b-a\right)+a\left(a-b\right)\left(b-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(b-c\right)\left(a-b\right)\left(a-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{1)}{abc}\)
Vậy ...
Bài 2:
c: Ta có: \(\left(x+3\right)\left(x-7\right)+\left(5-x\right)\left(x+4\right)=10\)
\(\Leftrightarrow x^2-7x+3x-21+5x+20-x^2-4x=10\)
\(\Leftrightarrow-3x-1=10\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
Bài 2:
a: Ta có: \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
=0
Bài 1:
a: Ta có: \(\left(a+b-c\right)^2-\left(b-c\right)^2-2a\left(b-c\right)\)
\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)-2a\left(b-c\right)\)
\(=a\cdot\left(a+2b-2c\right)-a\left(2b-2c\right)\)
\(=a\left(a+2b-2c-2b+2c\right)\)
\(=a^2\)
a) (x - 2)(x2 - 2x + 4)(x - 2)( x2 + 2x + 4)
= (x - 2)2(x - 2)2(x + 2)2
= (x - 2)4(x + 2)2
b) (a + b + c)3 - (b + c - a)3 - (a - b + c)3 - (a + b - c)3
Đặt a+b-c=x, c+a-b=y, b+c-a=z
=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c
Ta có hằng đẳng thức:
(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)
=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3
=3(x+y)(x+z)(y+z)
=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)
=3.2a.2b.2c
=24abc
c) (a + b)3 + (b + c)3 + (c + a)3 - 3(a + b)(b + c)(c + a)
Đặt x = a+b; y = b+c; z = c+a ta có:
x3+y3+z3−3xyz
= (x+y)3−3xy(x−y)+z3−3xyz
=[(x+y)3+z3]−3xy(x+y+z)
=(x+y+z)3−3z(x+y)(x+y+z)−3xy(x−y−z)
=(x+y+z)[(x+y+z)2−3z(x+y)−3xy]
=(x+y+z)(x2+y2+z2+2xy+2xz+2yz−3xz−3yz−3xy)
=(x+y+z)(x2+y2+z2−xy−yz−yx)
Thay vào ta có:
(a+b+b+c+c+a)[(a+b)2+(b+c)2+(c+a)2−(a+b)(b+c)−(b+c)(c+a)−(c+a)(a+b)]
=(2a+2b+2c)(a2−ab−ac+b2−bc+c2)
=2(a+b+c)(a2−ab−ac+b2−bc+c2)
a)\(\left(x-2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x-4\right)\)
\(=\left(x-2\right)^2\left(x^2-2x+4\right)\left(x^2+2x-4\right)\)
\(=\left(x-2\right)^2\left(x^4+4x^2+16\right)\)
\(=x^6-4x^5+8x^4-16x^3+32x^2-64x+64\)
lỗi