Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= { 0, 3, 6, 9, 12, 15, 18 }
b) Các phân tử của tập hợp B đều là số chẵn => B là số chẵn
a) A = {0, 3, 6, 9, 12, 15, 18}.
b) B = {x ∈ N / x = n(n+1), n ∈ N, 1 ≤ n ≤ 5}
a) \(A = \{ - 2; - 1;0;1;2\} \)
\(B = \{ - 3; - 2; - 1;0;1;2;3\} \)
b) Mỗi phần tử của tập hợp A đều thuộc tập hợp B.
Giải phương tình: \(x+\sqrt{2x-1}=2\left(x-3\right)^2\)
Điều kiện: \(x\ge\dfrac{1}{2}\)
\(PT\Leftrightarrow\sqrt{2x-1}-3=2x^2-13x+15\\ \Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}-3}=\left(x-5\right)\left(2x-3\right)\\ \Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}-2x+3\right)=0\\ \Leftrightarrow\begin{matrix}x=5\\\dfrac{2}{\sqrt{2x-1}+3}=2x-3\left(1\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow\left(2x-3\right)\left(\sqrt{2x-1}+3\right)=2\)
Đặt \(t=\sqrt{2x-1},t>0\) phương trình trở thành \(\left(t^2-2\right)\left(t+3\right)=2\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(L\right)\\t=\dfrac{-1-\sqrt{17}}{2}\\t=\dfrac{-1+\sqrt{17}}{2}\end{matrix}\right.\left(L\right)\)
Với \(t=\dfrac{-1+\sqrt{17}}{2}\) ta có \(\sqrt{2x-1}=\dfrac{-1+\sqrt{17}}{2}\)
\(\Leftrightarrow2x-1=\dfrac{9-\sqrt{17}}{2}\)
\(\Leftrightarrow x=\dfrac{11-\sqrt{17}}{4}\)
Vậy \(E=\left\{5;\dfrac{11-\sqrt{17}}{4}\right\}\)
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài
Bài 1:
a: A={0;1;2;3;4;5}
b: A có 6 phần tử