Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) \(\sqrt{48}+\sqrt{120}<\sqrt{49}+\sqrt{121}=7+11=18\)
b) \(\sqrt{23}+\sqrt{15}<\sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}<\sqrt{91}\)
Vậy...
2) => 33 < 3n < 35 => 3 < n < 5 => n = 4 hoặc n = 5
b) => 53 < 5.5n < 52 => 53 < 5n + 1 < 52 => 3 < n + 1 < 2 => 2 < n < 1 => không có n thỏa mãn
Vậy...
a) A=x(x-2)
Để A>0
TH1: x>0 và x-2 < 0 ==> 0<x<2
TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;
Vậy : Để A< 0 thì 0<x<2
Để A lớn hơn hoặc bằng 0 thì :
TH1: x >=0 và x-2>=0 ===> x>=2
TH2 : x<=0 và x-2<=2 ===> x<=2
như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2
Bài 1
A = \(x\)(\(x-2\))
\(x=0\); \(x-2\) = 0 ⇒ \(x=2\)
Lập bảng ta có:
\(x\) | - 0 + 2 + |
\(x-2\) | - - 0 + |
A =\(x\left(x-2\right)\) | + 0 - 0 + |
Để A ≥ 0 thì \(x\) ≥ 0 hoặc \(x\ge\) 2
Để A < 0 thì 0 < \(x\) < 2
Bài 1
b; \(\dfrac{-x+2}{3-x}\)
- \(x\) + 2 = 0 ⇒ \(x=2\)
3 - \(x=0\) ⇒ \(x=3\)
Lập bảng:
\(x\) | 2 3 |
-\(x+2\) | + 0 - - |
3 - \(x\) | + + 0 - |
A = \(\dfrac{-x+2}{3-x}\) | + - + |
B > 0 ⇔ \(x< 2\) hoặc \(x>3\)
B < 0 ⇔ 2 < \(x\) < 3