Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì S có 99 số hạng nên ta chia thành 33 nhóm, mỗi nhóm 3 số hạng như sau\(S=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(S=13+\left(3^3.1+3^3.3+3^3.3^2\right)+...+\left(3^{96}.1+3^{96}.3+3^{96}.3^2\right)\)
\(S=13+3^3.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{96}.13⋮13\)(đpcm)
a) S= 1+31 +32 +33 +............+398
S=(1+ 3+ 32) +...............+ (396 +397 +398)
S= 13+..............+396x(1+3+33)
S= 13+...............+396x13
S=13x(1+..........396)
Vì 13x(1+...........396) : 13 thì hết nên => S chia hết cho 13
a) Ta có: \(S=1+3+3^2+3^3+...+3^{98}\)
\(3S=3+3^2+3^3+3^4+...+3^{99}\)
\(3S-S=3^{99}-1\)
Hay \(2S=3^{99}-1\)
\(\Rightarrow S=\frac{3^{99}-1}{2}\)
b) Ta có: \(2S=3^{5x-1}-1\)
\(\Rightarrow3^{99}-1=3^{5x-1}-1\)
\(\Rightarrow3^{99}=3^{5x-1}\)
\(\Rightarrow5x-1=99\)
\(\Rightarrow5x=100\)
\(\Rightarrow x=20\)
Hok tốt nha^^
S=1+2+22+23+.....+297+298+299
S=20+2+22+23+.....+297+298+299
2S=2.(20+2+22+23+.....+297+298+299)
2S=21+22+23+24+....+298+299+2100
2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)
S=2100-20
S=2100-1
bS=1+2+22+23+.....+297+298+299
S=(1+2)+(22+23)+...+(296+297)+(298+299)
S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)
S=3+22.3+....+296.3+298.3
S=3.(1+22+.....+296+298)\(⋮\)3
Vậy S\(⋮\)3
c Ta có:S=2100-1
2100=24.25=(24)25
Ta có: 24 tân cùng là 6
=>(24)25 tận cùng là 6
Hay 2100=(24)25 tận cùng là 6
=>2100-1 tận cùng là 5
Vậy S tận cùng là 5
Chúc bn học tốt
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
\(S=1+3+3^2+3^3+...+3^{30}\Rightarrow3S=3+3^2+3^3+...+3^{31}\Rightarrow3S-S=3^{31}-1=3^{4.7+3}-1=\left(3^4\right)^7.27-1=\left(...1\right).27-1=\left(...27\right)-1=\left(...26\right)\)=> Chữ số tận cùng của S là 26: 2 = 13
b/
Vì scp ko có t/c là 3 => S ko là scp
ko .vì khi 330 chia nhỏ thành 33 thì chữ số tận cùng của nó là 7.vậy số tận cùng của 330 là số 7 nhưng số chính phương ko có chữ số tận cùng nào bằng 7 nên số tận cùng của Sko phải là số chính phương
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)
a
A=1+3+3²+...+3^30
3A=3(1+3+3²+...+3^30)
3A=3+3²+3^3+...+3^31
3A-A=3^31-1
=>A=3^31-1
a) Ta có S = 1 + 3 + 32 + ... + 398
=> 3S = 3 + 32 + 33 + ... + 399
Khi đó 3S - S = ( 3 + 32 + 33 + ... + 399) - (1 + 3 + 32 + ... + 398)
=> 2S = 399 - 1
=> S = \(\frac{3^{99}-1}{2}\)
b) Ta có 399 - 1 = 396.33 - 1 = (34)24 . (...7) - 1 = (...1).(...7) - 1 = (...7) - 1 = ...6
=> (399 - 1) : 2 = ...6 : 2 = ....3
=> S không là số chính phương
a. \(S=1+3+3^2+3^3+...+3^{98}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}\)
\(\Rightarrow3S-S=3^{99}-1\)
\(\Rightarrow S=\frac{3^{99}-1}{2}\)
b. \(S=1+3+3^2+...+3^{98}\)
\(\Rightarrow S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(\Rightarrow S=13+3^3.13+...+3^{96}.13\)
\(\Rightarrow S=13\left(1+3^3+3^6+...+3^{98}\right)⋮13\)
=> S không phải là SCP