Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)
\(=2-\sqrt{3}+2\sqrt{3}-3\)
\(=\sqrt{3}-1\)
b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)
\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)
\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)
\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)
\(=6-6\sqrt{3}+6\sqrt{3}=6\)
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)
\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)
b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)
\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)
\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)
\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)
\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)
\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)
\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
a) \(\sqrt{\left(5-\sqrt{3}\right)^2}=\left|5-\sqrt{3}\right|=5-\sqrt{3}\)
b) \(\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=-\left(1-\sqrt{2}\right)=\sqrt{2}-1\)( vì 1 < √2 )
c) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\left|\sqrt{3}-2\right|=-\left(\sqrt{3}-2\right)=2-\sqrt{3}\)( vì √3 < 2 )
b: \(=\left(12\sqrt[3]{2}+2\sqrt[3]{2}-2\sqrt[3]{2}\right)\cdot\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)
\(=12\sqrt[3]{2}\cdot5\sqrt[3]{4}-12\sqrt[3]{2}\cdot3\sqrt[3]{\dfrac{1}{2}}\)
\(=12\cdot5\cdot2-12\cdot3=120-36=84\)
1) \(\sqrt{\left(1-\sqrt{2}\right)^2}\)\(+\sqrt{\left(\sqrt{2}+3\right)^2}\)
\(=1-\sqrt{2}+\sqrt{2}+3\)
\(=4\)
2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-2+\sqrt{3}-1\)
\(=2\sqrt{3}-3\)
Bài 1:
a) \(=5.|2a|-5a^2\)
b) \(=7\left(a-1\right)+5a=12a-7\)
c) \(|a-2|-5\sqrt{a+2}\)
Bài 2:
a) \(=3-\sqrt{2}+5-\sqrt{2}=8-2\sqrt{2}\)
b) \(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)
\(=2\sqrt{2}\)
c) \(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)
\(=-2\sqrt{5}\)
a) \(5\sqrt{4a^2}-5a^2\)
\(=5.|2a|-5a^2\)
b) \(7\sqrt{\left(a-1\right)^2}+5a\)
\(=7\left(a-1\right)+5a\)
\(=12a-7\)
c) \(\sqrt{\left(2-a\right)^2}-5\sqrt{a+2}\)
\(=|a-2|-5\sqrt{a+2}\)
bài 2:
a)\(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=3-\sqrt{2}+5-\sqrt{2}\)
\(=8-2\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)
\(=2\sqrt{2}\)
c)\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}\)
\(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)
\(=-2\sqrt{5}\)
\(A=\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)
\(=|\sqrt{3}-2|+2\sqrt{3}-|-3|\)
\(=2-\sqrt{3}+2\sqrt{3}-3\)
\(=\sqrt{3}-1\)
=.= hok tốt!!