\(\frac{a-1}{\sqrt[3]{a^2}+\sqrt[3]{a}+1}\)\

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(=\left(12\sqrt[3]{2}+2\sqrt[3]{2}-2\sqrt[3]{2}\right)\cdot\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)

\(=12\sqrt[3]{2}\cdot5\sqrt[3]{4}-12\sqrt[3]{2}\cdot3\sqrt[3]{\dfrac{1}{2}}\)

\(=12\cdot5\cdot2-12\cdot3=120-36=84\)

26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

31 tháng 7 2019

a) \(A=\frac{3-\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}=\sqrt{3}-1\)

b) \(B=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{5}+1}=\frac{\sqrt{5}+1}{\sqrt{5}+1}=1\)

c) \(C=\frac{2\sqrt{2}+\sqrt{6}}{4+\sqrt{12}}=\frac{2\sqrt{2}+\sqrt{6}}{4+2\sqrt{3}}=\frac{\left(2\sqrt{2}+\sqrt{6}\right)\left(4-2\sqrt{3}\right)}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\frac{2\sqrt{2}}{4}=\frac{\sqrt{2}}{2}\)

d) \(D=\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{5+2\sqrt{6}}\left(\sqrt{2}-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=-\sqrt{5+2\sqrt{6}}\left(\sqrt{2}-\sqrt{3}\right)\) 

14 tháng 10 2020

a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)

\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)

\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)

b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)

\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)

c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)

\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)

11 tháng 7 2016

a) \(\sqrt{\left(1-\sqrt{5}\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}=\left(\sqrt{5}-1\right)-\left(3-\sqrt{5}\right)=2\sqrt{5}-4\)

b) \(\frac{a-2\sqrt{a}+1}{\sqrt{a}-1}=\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}=\sqrt{a}-1\) ( \(a\ge0\ne1\))

c) \(\frac{a+\sqrt{a}}{a}=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}.\sqrt{a}}=\frac{\sqrt{a}+1}{\sqrt{a}}=1+\frac{1}{\sqrt{a}}\)(\(a>0\))

d) \(\frac{3+\sqrt{3}}{1+\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=\sqrt{3}\)

29 tháng 7 2019

Ok, ko chép đề nha =))

\(A=\sqrt[3]{\frac{135}{5}}-\sqrt[3]{54\cdot4}\\ =\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)

\(B=\frac{1}{2}\cdot\sqrt[3]{2\cdot4}-\frac{1}{4}\cdot\sqrt[3]{16\cdot4}\\ =\frac{1}{2}\cdot\sqrt[3]{8}-\frac{1}{4}\cdot\sqrt[3]{64}\\ =\frac{1}{2}\cdot2-\frac{1}{4}\cdot4=1-1=0\)

\(C=\sqrt[3]{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\\ =\sqrt[3]{\left(\sqrt{2}+1\right)\left(2+2\cdot\sqrt{2}\cdot1+1\right)}\\ =\sqrt[3]{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)^2}\\ =\sqrt[3]{\left(\sqrt{2}+1\right)^3}=\sqrt{2}+1\)

\(D=\sqrt[3]{\frac{3\left(\sqrt[3]{2}-1\right)\left(1+\sqrt[3]{2}+\sqrt[3]{4}\right)}{\sqrt[3]{2}-1}}\\ =\sqrt[3]{\frac{3\left(2-1\right)}{\sqrt[3]{2}-1}}\\ =\sqrt[3]{\frac{3}{\sqrt[3]{2}-1}}\) (chịu, ko bít rút thêm :V)

\(E=\) chịu nốt =))

Chúc bạn học tốt nhaok.

29 tháng 7 2019

Thanks yeu