Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: M∈AB
⇔MA+MB=AB
Ta có: \(\frac{MA}{MB}=\frac{2}{3}\)
\(\Leftrightarrow\frac{MA}{2}=\frac{MB}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{MA}{2}=\frac{MB}{3}=\frac{MA+MB}{2+3}=\frac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\frac{MA}{2}=2\\\frac{MB}{3}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MA=4cm\\MB=6cm\end{matrix}\right.\)
Vậy: MA=4cm; MB=6cm
a: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD
=>OA/10=OC/18=(OA+OC)/(10+18)=21/28=3/4
=>OA=7,5cm; OC=13,5cm
b: OA/OC=OB/OD
=>OA*OD=OB*OC
c: AM/CN=AB/CD=OA/OC
Xét ΔOAM và ΔOCN có
OA/OC=AM/CN
góc OAM=góc OCN
=>ΔOAM đồng dạng với ΔOCN
=>góc AOM=góc CON
=>góc AOM+góc AON=180 độ
=>M,O,N thẳng hàng