Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: M∈AB
⇔MA+MB=AB
Ta có: \(\frac{MA}{MB}=\frac{2}{3}\)
\(\Leftrightarrow\frac{MA}{2}=\frac{MB}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{MA}{2}=\frac{MB}{3}=\frac{MA+MB}{2+3}=\frac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\frac{MA}{2}=2\\\frac{MB}{3}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MA=4cm\\MB=6cm\end{matrix}\right.\)
Vậy: MA=4cm; MB=6cm
Theo định lí Thales đảo, vì MN//BC nên ta có:
AM/AB = MN/BC = AM/(AM+MB) = 1/4
Suy ra MN = 12/4 =3
Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~
C,Gọi G là giao điểm của AC và BE
=> \(AG\perp BE\) (C là trực tâm tam giác ABE)
Lại có Góc GAB= Góc GBA = 45 độ
=> tam giác ABG vuông cân
Mà A,B cố định
=> G cố định
CMTT câu b => D;F;G thẳng hàng
=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB
Ban tu ve hinh nha, cau b va cau c mik gop lai lam chung 1 phan nha,
a) Do E la trung diem AD va F la trung diem BC nen EF la duong trung binh hing thang ABCD => AB//EF//DC
Do AB//EF =>\(\widehat{BAI}=\widehat{AIE}\left(Soletrong\right)\)ma \(\widehat{EAI}=\widehat{BAI}\left(AI.la.tia.phan.giac\right)\)
Suy ra \(\widehat{EAI}=\widehat{EIA}=>\Delta AIE.can.tai.E\)
chung minh tam giac BKE can tuong tu nha
b)+c) : do \(\Delta EAI.can\left(cma\right)\Rightarrow EA=EI\) ma EA=ED(gt)
Suy ra EA=ED=EI =>\(\Delta ADI\perp tai.I\) ( Ap dung dinh ly tam giac co duong trung tuyen ung voi canh doi dien va = 1/2 canh do thi la tam giac vuong )
chung minh tam giac BKC vuong tuong tu
Tu do ta cung suy ra luon duoc IE=1/2AD (vi cung =AE) ; KF=1/2BC thi tuong tu
d) Do ABCD la hinh thnag co EF la duong trung binh nen \(EF=\frac{AB+DC}{2}\Leftrightarrow EI+IK+KF=\frac{5+18}{2}=11,5.\left(1\right)\)
Ma ta da co EI=EA=ED(cmt) => EI=EA=6/2=3 cm , KF=BF=FC (cmt) => KF=BF=7/2=3,5 cm
Thay vao (1) ta co \(3+3,5+IK=11,5\Rightarrow IK=5\left(cm\right)\)
Vay IK=5 cm
Chuc ban hoc tot