K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\dfrac{15-2x-1}{5}>\dfrac{x+3}{4}\)

\(\Leftrightarrow\dfrac{-8x+56}{20}>\dfrac{5x+15}{20}\)

=>-8x+56>5x+15

=>-11x>-41

hay x<41/11

b: \(\Leftrightarrow\dfrac{5x+5-6}{6}< \dfrac{4x+4}{6}\)

=>5x-1<4x+4

=>x<5

10 tháng 1 2022

 \(3-\dfrac{2x+1}{5}>x+\dfrac{3}{4}.\)

\(\Leftrightarrow\dfrac{14-2x}{5}-x-\dfrac{3}{4}>0.\)

\(\Leftrightarrow\dfrac{56-8x-20x-15}{20}>0.\)

\(\Rightarrow-28x+41>0.\)

\(\Leftrightarrow-28x>-41.\)

\(\Leftrightarrow x< \dfrac{41}{28}.\)

 

21 tháng 12 2021

b: \(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x=1\)

29 tháng 7 2023

a) \(x-\sqrt{2x+3}=-2x\)

\(\Leftrightarrow\sqrt{2x+3}=x+2x\)

\(\Leftrightarrow\sqrt{2x+3}=3x\)

\(\Leftrightarrow2x+3=9x^2\)

\(\Leftrightarrow9x^2-2x-3=0\)

\(\Rightarrow\Delta=\left(-2\right)^2-4\cdot9\cdot\left(-3\right)=112>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2+\sqrt{112}}{18}=\dfrac{1+2\sqrt{7}}{9}\\x_2=\dfrac{2-\sqrt{112}}{18}=\dfrac{1-2\sqrt{7}}{9}\end{matrix}\right.\)

b) \(\dfrac{1}{x}=1-\dfrac{1}{x+1}\) (ĐK: \(x\ne0,x\ne-1\))

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{x+1}=1\)

\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{x+1+x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{2x+1}{x^2+x}=1\)

\(\Leftrightarrow2x+1=x^2+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

29 tháng 7 2023

c) \(\dfrac{2}{\sqrt{x+3}}=\dfrac{1}{\sqrt{x^2-9}}\) (ĐK: \(x\ge3\))

\(\Leftrightarrow2\sqrt{x^2-2}=\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{4\left(x^2-9\right)}=\sqrt{x+3}\)

\(\Leftrightarrow4\left(x^2-9\right)=x+3\)

\(\Leftrightarrow4x^2-36=x+3\)

\(\Leftrightarrow4x^2-x-36-3=0\)

\(\Leftrightarrow4x^2-x-39=0\)

\(\Rightarrow\Delta=\left(-1\right)^2-4\cdot4\cdot\left(-39\right)=625>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{625}}{8}=\dfrac{13}{4}\left(tm\right)\\x_2=\dfrac{1-\sqrt{625}}{8}=-3\left(ktm\right)\end{matrix}\right.\)

17 tháng 12 2023

a: 3x+2y-6>0

Thay x=0 và y=0 vào BPT, ta được:

\(3\cdot0+2\cdot0-6>0\)

=>-6>0(vô lý)

Vậy: Miền nghiệm của BPT 3x+2y-6>0 là nửa mặt phẳng không chứa biên và cũng không chứa điểm O(0;0) của đường thẳng 3x+2y-6=0

b: 3x+2y+6>=0

Khi x=0 và y=0 thì \(3x+2y+6=3\cdot0+2\cdot0+6=6>0\)(đúng)

=>Miền nghiệm của BPT 3x+2y+6>=0 là nửa mặt phẳng vừ chứa biên vừa chứa điểm O(0;0) của đường thẳng 3x+2y+6=0

6 tháng 1 2021

a, Phương trình có hai nghiệm phân biệt khi \(\Delta'=\left(m+1\right)^2-\left(4m^2-2m-2\right)=-3m^2+4m+3>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{13}}{3}< m< \dfrac{2+\sqrt{13}}{3}\)

b, Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'>0\\2\left(m+1\right)>0\\4m^2-2m-2>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

6 tháng 2 2021

a, \(Chof\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

- Lập bảng xét dấu :

Vậy \(\left\{{}\begin{matrix}f\left(x\right)>0\Leftrightarrow x\in\left(3;4\right)\\f\left(x\right)< 0\Leftrightarrow x\in\left(-\infty;3\right)\cup\left(4;+\infty\right)\\f\left(x\right)=0\Leftrightarrow x\in\left\{3;4\right\}\end{matrix}\right.\)

b, \(f\left(x\right)=\left(x-1\right)\left(x+6\right)\)

( Làm tương tự câu a )

 

27 tháng 7 2023

Ta có các hạng tử là:

\(\dfrac{1}{2}=\dfrac{1}{1\cdot2};\dfrac{1}{6}=\dfrac{1}{2\cdot3};\dfrac{1}{12}=\dfrac{1}{3\cdot4};\dfrac{1}{20}=\dfrac{1}{4\cdot5};...;\dfrac{1}{9900}=\dfrac{1}{99\cdot100}\)

Ta thấy tất cả đề là: \(\dfrac{1}{x\left(x+1\right)}\) 

Tính chất đặc trưng của tập hợp là:

\(A=\left\{\dfrac{1}{x\left(x+1\right)}|x\in N,1\le x\le99\right\}\)

A={1/x(x+1)|x thuộc N, 1<=x<=99}