K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

\(1,E=x^2+y^2+z^2+xy+yz+xz+3\ge\sqrt[6]{x^2.y^2.z^2.xy.yz.xz}+3\ge3\)( cauchy)

dấu "=" xảy ra khi và chỉ khi \(x=y=z=0\)

vậy đẳng thức luôn dương

\(2,a.x^4-2x^3+10x^2-20x=0\)

\(x^2\left(x^2+10\right)-2x\left(x^2+10\right)=0\)

\(\left(x^2-2x\right)\left(x^2+10\right)=0\)

\(\orbr{\begin{cases}x^2-2x=0\\x^2+10=0\end{cases}\orbr{\begin{cases}x\left(x-2\right)=0\\x^2=-10\left(KTM\right)\end{cases}}}\)

\(\orbr{\begin{cases}x=0\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)

\(b,x^2\left(x-1\right)-4x^2+8x-4=0\)

\(x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\)

\(x^2\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2\left(x-1\right)-2\left(x-1\right)^2=0\)

\(\left(x-1\right)\left(x^2-2x+2\right)=0\)

\(\orbr{\begin{cases}x=1\\x^2-2x+2=0\end{cases}\orbr{\begin{cases}x=1\\\left(x-1\right)^2+1=0\end{cases}\orbr{\begin{cases}x=1\left(TM\right)\\\left(x-1\right)^2=-1\left(KTM\right)\end{cases}}}}\)

\(c,x^3+2x+10+5x^2=0\)

\(x^2\left(x+5\right)+2\left(x+5\right)=0\)

\(\left(x^2+2\right)\left(x+5\right)=0\)

\(\orbr{\begin{cases}x^2+2=0\\x+5=0\end{cases}\orbr{\begin{cases}x^2=-2\left(KTM\right)\\x=-5\left(TM\right)\end{cases}}}\)

15 tháng 7 2021

Ta có: E = x2 + y2  + z2 + xy + yz + xz + 3 

=> 2E = 2x2 + 2y2 + 2z2  +2xy + 2yz + 2xz + 6 

2E = (x + y)2 + (Y + z)2 + (x + z)2 + 6 

Do  (x + y)2 \(\ge\)0; (y + z)2 \(\ge\)0; (z + x)2 \(\ge\)0; 6 > 0

=> 2E \(\ge\)6 => E \(\ge\)3 > 0

=> biểu thức E luôn dương với mọi giá trị của biến

NV
15 tháng 12 2020

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 7 2021

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

NV
7 tháng 3 2020

1.

a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)

\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)

\(\Leftrightarrow x^3+3x^2+2x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)

b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

NV
7 tháng 3 2020

1c/

\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)

\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

Vậy pt có nghiệm duy nhất \(x=-1\)

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác 

13 tháng 11 2021

\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

25 tháng 8 2019

a) x = -1.                      b) x = 4 hoặc x = 5.

c) x = ± 2 .                  d) x = 1 hoặc x = 2.

* Dạng toán về phép chia đa thức Bài 9.Làm phép chia: a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1) Bài 10: Làm tính chia 1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5) Bài 11: 1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5 2. Tìm n để đa thức...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9.Làm phép chia:

a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)

Bài 10: Làm tính chia

1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)

Bài 11:

1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5

2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x –x2+ 3 2. B = –x2+ 6x –11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x

các bn lm nhanh nhanh giùm mk,mk đang cần gấp.Thank các bn nhìu

1

Bài 13:

1: \(A=-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu '=' xảy ra khi x=2

2: \(B=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\)

Dấu '=' xảy ra khi x=3

đỡ mik vớiCâu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc  c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abcCâu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :a/ 6x2y2-4y4b/ -6x2y2+4y4c/-6x2y2-4y4d/ 18x4-4y4Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:a/ 0      b/ 40x   c/ -40x     d/ Kết quả khácCâu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả...
Đọc tiếp

đỡ mik với

Câu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :
a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc 

 c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abc

Câu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :

a/ 6x2y2-4y4
b/ -6x2y2+4y4
c/-6x2y2-4y4
d/ 18x4-4y4

Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:
a/ 0      b/ 40x   c/ -40x     d/ Kết quả khác
Câu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả thực hiện phép tính là
a/ 6x2-15x -55          b/ -43x-55      c/ K phụ thuộc biến x       d/ Kết qủa khác
Câu 14: Tính (x-y)(2x-y) ta được :
a/ 2x2+3xy-y2
b/ 2x2-3xy+y2
c/ 2x2-xy+y2
d/ 2x2+xy –y

Câu 15: Tính (x2
-2xy+y2
).(x-y) bằng :

a/-x
3
-3x2y+3xy2
-y
3
b/x3
-3x2y+3xy2
-y
3
c/x3
-3x2y-3xy2
-y
3
d/-x3-3x2y+3xy2+y3

Câu 16: Biểu thức rút gọn của (2x+y)(4x2
-2xy+y2
) là :

a/ 2x3
-y
3
b/ x3
-8y3
c/ 8x3
-y
3
d/8x3+y3

Câu 17: Tính (x-2)(x-5) bằng
a/ x2+10 b/ x2+7x+10 c/ x2

-7x+10 d/ x2
-3x+10

Câu 18: Cho A=3.(2x-3)(3x+2)-2(x+4)(4x-3)+9x(4-x). Để A có giá trị bằng 0 thì x
bằng :
a/ 2 b/ 3 c/ Cả a,b đều đúng d/ Kết quả khác
Câu 19: Tìm x biết (5x-3)(7x+2)-35x(x-1)=42. x bằng
a/ -2 b/
1
2
c/ 2 d/ Kết quả khác
Câu 20: Tìm x biết (3x+5)(2x-1)+(5-6x)(x+2)=x . giá trị x bằng
a/ 5 b/ -5 c/ -3 d/ Kết quả khác
câu 21: Giá trị của biểu thức A =(2x+y)(2z+y)+(x-y)(y-z) với x=1;y=1 ;z=-1 là
a/ 3 b/ -3 c/2 d/-2
Câu 22: Giá trị của x thoả mãn (10x+9).x-(5x-1)(2x+3) =8 là
a/1,5 b/ 1,25 c/ -1,25 d/3
Câu 23: Giá trị x thoả mãn ;x(x+1)(x+6)-x3 =5x là

a/ 0 b/17− c/ 0 hoặc17d/ 0 hoặc17−

Câu 25: Giá trị nhỏ nhất của y=(x-3)2 +1 là
a/ khi x=3 b/3 khi x=1 c/ 0 khi x=3 d/ không có GTNN trên TXĐ
Câu 26: Chọn câu sai
Với mọi số tự nhiên n,giá trị của biểu thức (n+7)2-(n-5)2chia hết cho

a/ 24 b/16 c/8 d/ 6
Câu 27: Rút gọn biểu thức (x+y)2 +(x-y)2-2x2ta được kết quả là :

a/ 2y b/2y2c/-2y2d/ 4x+2y2
Câu 28: Với mọi giá trị của biến số giá trị của biểu thức 16x4-40x2y3 +25y6là 1 số
a/ dương b/Không dương c/ âm d/ không âm
Câu 29: Thực hiện phép tính :( 5x+4)2 +(1-5x)2 +2(5x+4)(1-5x) ta được
a/ (x+5)2
b/ (3+10x)2

c/ 9 d/25

Câu 30: Thực hiện phép tính (2x-3)2 +(3x+2)2 +13(1-x)(1+x) ta được kết quả là :
a/ 26x2
b/ 0 c/-26 d/26
Câu 31: Chọn kết quả đúng ; (2x+3y)(2x-3y) bằng
a/ 4x2-9y2
b/ 2x2-3y2
c/ 4x2+9y2

d/ 4x-9y

Câu 32: Tính Tính (x+1/4)^2ta được :

a/ x2-12x + 1/4

b/ x2 +12x + 18
c/ x2 +12x + 116
d/ x2-12x -1/4

Câu 33: Với mọi x thuộc R phát biểu nào sau đây là sai
a/ x2-2x+3>0 b/ 6x-x2-10<0 c/ x2 –x-100<0 d/ x2 –x+1>0

9
4 tháng 12 2021
1÷+×/=÷#$%!=
4 tháng 12 2021

chúc mng lm bài được

13 tháng 11 2021

Bài 1:

\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)

Bài 2:

\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)

13 tháng 11 2021

câu d của bài 2 là của bài 1 nha mình để nhầm chỗ huhu