K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

A B C H

Xét tam giác ABC vuông tại A

ta có AB2+AC2=BC2   (1)

Xét tam giác ABH vuông tại H

ta có BH2+AH2=AB2   (2)

Xét tam giác ACH vuông tại H

ta có CH2+AH2=AC2   (3)

Thay (2), (3) vào (1) ta có

BH2+AH2+CH2+AH2=BC2

BH2+2AH2+CH2=BC2

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMRa)HB=AK                  b)Tính BH2+CK2Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,ADBài 16.Cho tam giác ABC vuông...
Đọc tiếp

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2

Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2

Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMR

a)HB=AK                  b)Tính BH2+CK2

Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,AD

Bài 16.Cho tam giác ABC vuông cân tại A.Kẻ 1 đường thẳng d qua A.Từ B,C kẻ BH,CE vuông góc d(H,E nằm trên d).Chứng minh rằng tổng BH2+CE2 không phụ thuộc vị trí d

Bài 17.Cho O là điểm tùy ý nằm trong tam giác ABC.Vẽ OA1,OB1,OC1 lần lượt vuông góc với BC,CA,AB.CMR AB12+BC12+CA12=AC12+BA12+CB12

Bài 18.Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC(H nằm trên BC).Điểm D nằm giữa A và H.Trên tia đối của tia HA,lấy điểm E sao cho HE=AD.Đường thẳng vuông góc AH tại D cắt AC tại F.Chứng minh EB vuông góc EF

1
6 tháng 2 2017

B12:

Có:Tam giác ABH vuông tại H

     ________ACH__________

=>AB2-AC2=(AH2+BH2)-(AH2+CH2)=BH2-CH2.

Câu 1: cho tam giác ABC(AB>AC),M là trung điểm của BC.Đường thẳng Vuông góc với tia phân giác của góc A tại M cắt cạnh AB,AC lần lượt tại E và F.Chứng minh:a) EH=HFb) 2BME=ACB - Bc) FE2 :4+AH2=AE2d) BE=CFCâu 2: Cho tam giác ABC có các góc nhỏ hơn 120 độ.ở phía ngoài tam giác ABC,vẽ các tam giác đều ABD và ACEa) Chứng minh DC=BEb) Gọi I là giao điểm Của DC và BE.Tính số đo góc BICCâu 3: cho tam giác ABC vuông...
Đọc tiếp

Câu 1: cho tam giác ABC(AB>AC),M là trung điểm của BC.Đường thẳng Vuông góc với tia phân giác của góc A tại M cắt cạnh AB,AC lần lượt tại E và F.Chứng minh:

a) EH=HF

b) 2BME=ACB - B

c) FE:4+AH2=AE2

d) BE=CF

Câu 2: Cho tam giác ABC có các góc nhỏ hơn 120 độ.ở phía ngoài tam giác ABC,vẽ các tam giác đều ABD và ACE

a) Chứng minh DC=BE

b) Gọi I là giao điểm Của DC và BE.Tính số đo góc BIC

Câu 3: cho tam giác ABC vuông tại A.Kẻ AH vuông với BC (H không thuộc BC)

a) chứng minh: AB2+CH2=AC2+BH2

b) biết AB=6cm, AC=8cm.Tính AH,HB,HC

Câu 4: Cho ba điểm B,H,C thẳng hàng,BC=13cm,BH=4cm,HC=9cm.Từ H vẽ tia Hx vuông góc với đường thẳng BC.Lấy điểm A thuộc Tia Hx sao cho HA=6cm

a) tang giác ABC là tam giác gì?chứng minh điều đó?

b) Trên tia HC,Lấy HD=HA.Từ D vẽ đường thẳng song song với AH cắt AC tại E.Chứng minh: AE=AB

(bài tập tết: anh chị giải hộ với.viết lời giải ra dùm em luôn nha.Cảm ơn mọi người nhiều)


 

5
5 tháng 11 2016

Khó qá

10 tháng 2 2017

Chép dài vầy là tút

Có bạn nài làm đc ko v

14 tháng 3 2017

jtfjtrijykyklyktylkguj

22 tháng 6 2017

Xin lỗi mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn đc xin lỗi NGUYỄN ANH TÚ

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).

25 tháng 1 2016

dễ mà dài nên ko ai trả lời đâu

 

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
Giúp mih mấy bài này nhà.Mih đang cần gấp. Mình sẽ cảm ơn những người đã giúp mih 6. Cho tam giác ABC có góc A và góc B tỉ lệ với 3 và 15; góc C gấp 4 lần góc A. Tính các góc của tam giác ABC.7. Cho tam giác AHB và tam giác A’H’B’ vuông tại H và H’; với AH = A’H’ và góc B bằng góc B’. Kéo dài BH và B’H’ ra những đoạn HC = H’C’. Chứng minh rằng  tam giác ABC bằng tam giác A’B’C’.8.  Cho...
Đọc tiếp

Giúp mih mấy bài này nhà.Mih đang cần gấp. Mình sẽ cảm ơn những người đã giúp mih 

6. Cho tam giác ABC có góc A và góc B tỉ lệ với 3 và 15; góc C gấp 4 lần góc A. Tính các góc của tam giác ABC.

7. Cho tam giác AHB và tam giác AHB vuông tại H và H; với AH = AH và góc B bằng góc B. Kéo dài BH và BH ra những đoạn HC = HC. Chứng minh rằng  tam giác ABC bằng tam giác ABC.

8.  Cho tam giác ABC và tam giác ABC với các tia phân giác của góc A và góc A cắt BC và BC tại D và D. Chứng minh rằng nếu AD = AD , góc A bằng góc A và góc C bằng góc C thì hai tam giác đó bằng nhau.

9. Cho tam giác ABC cân tại A và tam giác ABC cân tại A. Vẽ AH và AH lần lượt vuông góc với BC và BC lần lượt tại H và H. Chứng minh rằng nếu AH = AH , góc A bằng góc A thì hai tam giác đó bằng nhau.

10. Cho tam giác ABC có AB<AC. M là trung điểm BC. Từ M vẽ đường thẳng vuông góc với tia phân giác góc A tại N và cắt AB tại E, cắt AC tại F. Chứng minh rằng: 

a. AE=AF          b. BE=CF               c. AB+AC=2AE.    

0