K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021

Bài 1:

undefined

a, Xét ΔAOD và ΔBOD, ta có:

OA = OB (gt)

∠(AOD) = ∠(BOD)(vì OD là tia phân giác)

OD cạnh chung 

Suy ra: ΔAOD= ΔBOD(c.g.c)

Vậy: DA = DB (hai cạnh tương ứng)

b, ΔAOD= ΔBOD (chứng minh trên)

⇒ ∠(ADO) = ∠(BDO) (hai góc tương ứng) (1)

Ta có: ∠(ADO) + ∠(BDO) =180o(hai góc kề bù) (2)

Từ (1) và (2) suy ra: ∠(ADO) = ∠(BDO) =90o

Vậy: OD ⊥AB

Bài 2:

undefined

a, Xét ΔABD và ΔEBD, ta có:

AB = BE (gt)

∠(ABD) = ∠(DBE) (vì BD là tia phân giác)

BC cạnh chung 

Suy ra: ΔABD = ΔEBD(c.g.c)

⇒ DA = DE (hai cạnh tương ứng)

b, Ta có: ΔABD = ΔEBD(chứng minh trên)

Suy ra: ∠A = ∠(BED) (hai góc tương ứng)

Mà ∠A =90onên ∠(BED) =90o

10 tháng 12 2021

a) Xét tam giác ABD và tam giác EBD có:

+ ^ABD = ^EBD (do BD là phân giác ^B).

+ BD chung.

+ AB = BE (gt).

=> Tam giác ABD = Tam giác EBD (c - g - c).

=> DA = DE (2 cạnh tương ứng).

b) Tam giác ABD = Tam giác EBD (cmt).

=> ^BAD = ^BED (2 góc tương ứng).

Mà ^BAD = 90o (gt).

=> ^BED = 90o.

19 tháng 12 2021

giúp mik với

22 tháng 1 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔABD và ΔEBD, ta có:

AB = BE (gt)

∠(ABD) = ∠(DBE) (vì BD là tia phân giác)

BC cạnh chung

Suy ra: ΔABD = ΔEBD(c.g.c)

⇒ DA = DE (hai cạnh tương ứng)

a) Xét ΔDAB và ΔDEB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔDAB=ΔDEB(c-g-c)

Suy ra: DA=DE(Hai cạnh tương ứng)

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

AD=ED

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)

=>\(\widehat{ADF}+\widehat{ADE}=180^0\)

=>E,F,D thẳng hàng

27 tháng 11 2016

B C D A E F

a) Xét ΔADB và ΔEDB có:

BA = BE ( giả thiết )

Góc ABD = EBD ( BD là tia phân giác của góc ABE )

BD cạnh chung.

=> ΔADB = ΔEDB ( c.g.c )

=> DA = DE ( 2 cạnh tương ứng )

b) Vì ΔADB = ΔEDB nên góc DAB = DEB = 90 độ ( 2 góc tương ứng).

27 tháng 11 2016

Mk vẽ hình ko đc đẹp cho lắm, thông cảm nha!

25 tháng 7 2023

a) xét ΔABD và ΔEBD có:   

  BA = BE (GT)   

 ∠ABD=∠EBD( BD là tia phân giác ∠ABE)

  BD chung⇒ΔABD=ΔEBD(ch-cgv)

⇒AD=ED (2 cạnh tương ứng)

b)Vì ΔABD=ΔEBD(CMT)

⇒∠BAD=∠BED(2 góc tương ứng)

Mà ∠BAD= 90 độ

⇒∠BED = 90 độ

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

b: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

DO đó: ΔADK=ΔEDC

Suy ra: DK=DC

hay ΔDKC cân tạiD

5 tháng 4 2022

tự vẽ hình giúp mình nha ^^

áp dụng định lí py-ta-go vào tam giác vuông ABC

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=10^2-6^2=100-36=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

b) Xét \(\Delta BADvà\Delta BEDcó\)

BD:chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

AB=BE(gt)

\(\Delta BAD=\Delta BED\left(c-g-c\right)\)

=>DA=DE

c)Xét \(\Delta KADvà\Delta CEDcó\)

\(\widehat{KAD}=\widehat{CED}\left(=90^0\right)\)

\(\widehat{KDA}=\widehat{CDE}\) (đối đỉnh)

\(=>\Delta KAD=\Delta CED\left(g-c-g\right)\)

=>DC=DK

=> tam giác KDC cân tại D

 

28 tháng 3 2020

Giải:
a) Xét ΔABD và ΔEBD có :

AB=BE(gt)

B1ˆ=B2ˆ(=12Bˆ)

BD: cạnh chung

⇒ΔABD=ΔEBD(c−g−c)

⇒DA=DE ( cạnh tương ứng )

Vậy DA=DE

b) Vì ΔABD=ΔEBD

⇒ góc A= góc BED

Mà  góc A=900⇒ góc BED=900

Vậy góc BED =900

c) VÌ ΔABD=ΔEBD ( cmt)

=> góc ABD = góc EBD( 2 góc tương ứng)

Xét \(\Delta ABIv\text{à}\Delta EBI\)có:

  AB = EB

góc ABD = góc EBD

BI cạnh chung 

=>\(\Delta ABI=\text{ }\Delta EBI\)

=> góc AIB = góc EIB và IA = IE          (1)

Mà góc AIB + góc EIB =180 0

=> \(\hept{\begin{cases}g\text{ócAIB=90^0}\\g\text{óc EIB=90^0}\end{cases}}\)(2)

Từ (1),(2) => BI là đường trung trực của AE

Mà I \(\in\)BD

=> BD là đường trung trực của AE

Vậy BD là đường trung trực của AE