K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

a, Xét \(\Delta DBA\) \(\Delta ABC\) có :

Góc B chung

Góc ADB = Góc BAC ( =90 o )

\(\Rightarrow\Delta DBA\sim\Delta ABC\left(g-g\right)\)

b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )

=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Lại có : \(\dfrac{AD}{AC}=\dfrac{AB}{BC}\left(\Delta DBA\sim\Delta ABC\right)\)

Suy ra : \(AD=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

c, Ta có : BF là tia phân giác của góc B

=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\left(1\right)\)

BE là tia phân giác của góc B

=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\left(2\right)\)

\(\dfrac{BD}{AB}=\dfrac{AB}{BC}\left(\Delta DBA\sim\Delta ABC\right)\left(3\right)\)

Từ (1), (2) và (3) suy ra :

\(\dfrac{FD}{FA}=\dfrac{EA}{EC}\Rightarrow FD.EC=EA.FA\)

17 tháng 5 2019

a, Xét ΔDBAΔDBA ΔABCΔABC có :

Góc B chung

Góc ADB = Góc BAC ( =90 o )

ΔDBAΔABC(gg)⇒ΔDBA∼ΔABC(g−g)

b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )

=> BC = AB2+AC2=62+82=10AB2+AC2=62+82=10

Lại có : ADAC=ABBC(ΔDBAΔABC)ADAC=ABBC(ΔDBA∼ΔABC)

Suy ra : AD=AC.ABBC=6.810=4,8(cm)AD=AC.ABBC=6.810=4,8(cm)

c, Ta có : BF là tia phân giác của góc B

=> FDFA=BDAB(1)FDFA=BDAB(1)

BE là tia phân giác của góc B

=> EAEC=ABBC(2)EAEC=ABBC(2)

BDAB=ABBC(ΔDBAΔABC)(3)BDAB=ABBC(ΔDBA∼ΔABC)(3)

Từ (1), (2) và (3) suy ra :

FDFA=EAECFD.EC=EA.FA

Chuc bn thi tot

28 tháng 4 2022

a, Xét ΔDBAΔDBA và ΔABCΔABC có :

Góc B chung

Góc ADB = Góc BAC ( =90 o )

⇒ΔDBA=ΔABC(g−g)

b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )

=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)

Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)

c, Ta có : BF là tia phân giác của góc B

=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)

BE là tia phân giác của góc B

=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)

Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)

Từ (1), (2) và (3) suy ra :

\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA

AH
Akai Haruma
Giáo viên
28 tháng 4 2022

Bạn bị nhầm ở câu tính AD. 

\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}=\dfrac{6}{6+10}=\dfrac{3}{8}\Rightarrow AD=\dfrac{3}{8}AC=3\)

Câu 2: 

a: Xét ΔABC vuông tại A và ΔDBA vuông tại D có

góc B chung

Do đo: ΔABC đồng dạg với ΔDBA

b: Xét ΔABC vuông tại A có AD là đường cao

nên \(AD^2=DB\cdot DC\)

c: Xét ΔABD có BF là đường pg

nên FD/FA=BD/BA(1)

Xét ΔABC có BE là đường phân giác

 nên EA/EC=BA/BC(2)

Ta có: \(BA^2=BC\cdot BD\)

nên BD/BA=BA/BC(3)

Từ (1), (2) và (3) suy ra FD/FA=EA/EC

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằnga, Tứ giác AIHk là hình chữ nhật  b, \(\Delta AKI\) \(\sim\Delta ABC\)c, Tính diện tích \(\Delta ABC\)Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cma, C/m : \(\Delta ABE\sim\Delta...
Đọc tiếp

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng

a, Tứ giác AIHk là hình chữ nhật  

b, \(\Delta AKI\) \(\sim\Delta ABC\)

c, Tính diện tích \(\Delta ABC\)

Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm

a, C/m : \(\Delta ABE\sim\Delta DEC\)

b, tính tỉ số diện tích \(\Delta ABE\) và diện tích \(\Delta DEC\)

c, Tính BC

Bài 3: Cho tam giác ABC vuông tại A , có AB=3cm, AC=5cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E

a, Chứng minh rằng \(\Delta ABC\sim\Delta DEC\)

b, Tính độ dài các đoạn thẳng BC , BD

c, Tính độ dài AD

d, Tính diện tích \(\Delta ABC\) và diện tích tứ giác ABDE

2
23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)

1 tháng 3 2021

`a,15x-8x=9`

`<=>7x=9`

`<=>x=9/7`

`b,(x+3)(x-5)=0`

`<=>` $\left[ \begin{array}{l}x+3=0\\x-5=0\end{array} \right.$

`<=>` $\left[ \begin{array}{l}x=5\\x=-3\end{array} \right.$

Vậy `S={-3,5}`

Bài 2:

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm