Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KH cắt BD tại M
Ta có HI//AC//ND ( cùng \(\perp AB\)) \(\Rightarrow\widehat{C}=\widehat{H_2}\) (đồng vị) và \(\widehat{H_1}=\widehat{H_3}\) (đối đỉnh)
K là trung điểm AC và \(\Delta AHC\) vuông tại H \(\Rightarrow\)KH = KC \(\Rightarrow\Delta KHC\) cân tại K
\(\Rightarrow\widehat{C}=\widehat{H_3}=\widehat{H_1}=\widehat{H_2}\Rightarrow\Delta BHI=\Delta BHM\left(ch-gn\right)\)(có \(\widehat{H_1}=\widehat{H_2}\)HB chung)
\(\Rightarrow\widehat{BIH}=\widehat{BMH}=90^0\Rightarrow HM\perp BD\)
\(\Rightarrow\)BH = BM.MD (hệ thức lượng trong \(\Delta BHD\) vuông tại H)
Mà \(\Delta BMK~\Delta BTD\left(g.g\right)\) ( có \(\widehat{BMK}=\widehat{BTD}=90^0\) và góc B chung)
\(\Rightarrow\)BM.BD = BT.BK = BH
Vì BH =BI.BA (hệ thức lượng trong \(\Delta BHA\) vuông tại H)
\(\Rightarrow\)BT.BK=BI.BA \(\Rightarrow\Delta TBI~\Delta ABK\left(c-g-c\right)\)(có góc B chung và \(\frac{BT}{BI}=\frac{BK}{BA}\))
\(\Rightarrow\widehat{BTI}=\widehat{BAK}=90^0\Rightarrow TI\perp BK\)tại T
\(\Rightarrow\Delta BDT\) nội tiếp (J) có cạnh BD là đường kính \(\Rightarrow\Delta BDT\)vuông tại T
\(\Rightarrow TD\perp BK\) tại T \(\Rightarrow\)Từ T có TI và TD cùng \(\perp\) BK suy ra 3 điểm D, T, I thẳng hàng.
Bài 2 :
Gọi BC và EF cắt OA lần lượt tại H và I
Dễ thấy OA là trung trực của BC
\(\Rightarrow OA\perp BC\) tại H
Vì E là trung điểm của AB , F là trung điểm AC nên EF // BC
\(\Rightarrow EF\perp OA\) tại I
Đồng thời EF đi qua trung điểm của AH
\(\Rightarrow IH=IA=\frac{AH}{2}\)
Áp dụng định lí Pytagoras và hệ thức lượng trong tam giác vuông ta có :
\(MD^2=OM^2-OD^2=IM^2+OI^2-OC^2=IM^2+OH^2+2OH.HI+HI^2-OC^2\)
\(=IM^2+IA^2+OH.AH-\left(OC^2-OH^2\right)=AM^2+CH^2-CH^2=AM^2\)
Vậy MD = MA ( đpcm )
Chúc bạn học tốt !!