K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) tam giác ABC có:

AB=AC => tam giác ABC cân tại A

Lại có: AD là đường phân giác của tam giác TG ABC

=> AD cũng là đường cao của tam giác ABC

b) xét tam giác EAD và tam giác ADF ta có:

AD chung

góc EAD = FDA ( AD là đpg)

AE =AF ( AB -BE=AC-FC)

=> TG EAD =TG ADF(cdc)

=> góc EDA=góc ADC(2 góc tương ứng)

mà AD nằm giữa 2 góc

=>...

3 tháng 9 2021

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

Góc EAD=góc FAD

AD chung

Do đó: ΔAED = ΔAFD

Suy ra: Góc EAD = góc FDA

hay DA là tia phân giác của góc EDF

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

Suy ra: \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

hay AD\(\perp\)BC

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

22 tháng 1

dm

AH
Akai Haruma
Giáo viên
14 tháng 1

Lời giải:

1. Xét tam giác $ABD$ và $ACD$ có:

$AB=AC$

$\widehat{BAD}=\widehat{CAD}$ (do $AD$ là tia phân giác $\widehat{BAC}$)

$AD$ chung

$\Rightarrow \triangle BAD=\triangle CAD$ (c.g.c)

$\Rightarrow \widehat{ADB}=\widehat{ADC}$ 

Mà $\widehat{ADB}+\widehat{ADC}=180^0$

$\Rightarrow \widehat{ADB}=\widehat{ADC}=180^0:2=90^0$

$\Rightarrow AD\perp BC$

2.

$AB=AC$

$BE=CF$

$\Rightarrow AB-BE=AC-CF$ hay $AE=AF$

Xét tam giác $AED$ và $AFD$ có:

$AD$ chung

$AE=AF$

$\widehat{EAD}=\widehat{FAD}$ 

$\Rightarrow \triangle AED=\triangle AFD$ (c.g.c)

$\Rightarrow \widehat{EDA}=\widehat{FDA}$ 

$\Rightarrow DA$ là tia phân giác $\widehat{EDF}$

1: Xét ΔADB và ΔADC có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

2: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC và AB=AC

nên AE=AF

Xét ΔEAD và ΔFAD có

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔEAD=ΔFAD

=>\(\widehat{EDA}=\widehat{FDA}\)

=>DA là phân giác của góc EDF

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

14 tháng 12 2022

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA+AF=BF

BE+EC=BC

mà BA=BE; AF=EC

nên BF=BC

=>ΔBFC cân tại B

mà BD là phângíac

nên BD vuông góc CF

c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc EDC+góc FDC=180 độ

=>E,D,F thẳng hàng

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm