Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABE có
K,I lần lượt là trung điểm của AB,AE
=>KI là đường trung bình của ΔABE
=>KI//BE và \(KI=\dfrac{BE}{2}\)
=>KI//BC
Xét ΔABC có
K,F lần lượt là trung điểm của AB,AC
=>KF là đường trung bình của ΔABC
=>KF//BC
2: Sửa đê: Chứng minh F,I,K thẳng hàng
Ta có: KI//BC
KF//BC
KI,KF có điểm chung là K
Do đó: K,I,F thẳng hàng
1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)
Bài 9:
1: Xét ΔABC có
E,K lần lượt là trung điểm của AB,AC
=>EK là đường trung bình của ΔABC
2: Vì EK là đường trung bình của ΔABC
nên EK//BC và \(EK=\dfrac{1}{2}BC\)
=>EI//BH
Xét ΔABH có
E là trung điểm của AB
EI//BH
Do đó: I là trung điểm của AH
3: \(EK=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
bài 10:
1: Xét ΔADC có
M là trung điểm của AD
MN//DC
Do đó: N là trung điểm của AC
Xét hình thang ABCD có
M là trung điểm của AD
MK//AB//CD
Do đó: K là trung điểm của BC
2: \(AB=\dfrac{1}{2}DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)
Xét ΔADC có
M,N lần lượt là trung điểm của AD,AC
=>MN là đường trung bình của ΔADC
=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)
Xét ΔCAB có
N,K lần lượt là trung điểm của CA,CB
=>NK là đường trung bình của ΔCAB
=>\(NK=\dfrac{1}{2}AB=5\left(cm\right)\)
MK=MN+NK
=10+5
=15(cm)
Bài 8:
1: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
2: Sửa đề: EF=1/2BC
Xét ΔACB có
E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình của ΔACB
=>\(EF=\dfrac{1}{2}CB\)
3: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là phân giác của góc EAF
Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có AM là phân giác của góc EAF
nên AEMF là hình thoi
=>AE=MF=FM=AF
a)Ta có:`AB^2+AC^2=21^2+28^2=1225`
Mà `BC^2=1225`
Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`
`=>` tam giác ABC vuông
b)Vì BAC vuông tại A
`=>hat{BAC}=90^o`
`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`
Xét tam giác HBA và tam giác HAC có"
`hat{HAB}=hat{HCA}`(CMT)
`hat{BHA}=hat{HAC}=90^o`
`=>` tam giác HBA đồng dạng với tam giác HAC(gg)
c)Xét tam giác ACH và tam giác BAC ta có:
`hat{AHC}=hat{BAC}=90^o`
`hat{ACB}` chung
`=>DeltaACH~DeltaBAC(gg)`
`=>(AC)/(BH)=(BC)/(AC)`
`=>AC^2=BH.BC`.
d)Đường phân góc gì nhỉ?
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot AH\cdot BC\)
=>AB*AC=AH*CB
b: Xét ΔABC vuông tại A có AH là đường cao
nên AC^2=HC*BC
c: Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
Lời giải: Giả sử \(\widehat{BAC}=2\widehat{ABC}\), kẻ đường phân giác AD của \(\widehat{BAC}\)( D \(\in\)canh AC )
\(\Rightarrow\)\(\widehat{CAD}=\widehat{DAC}\) theo t/c cua duong phan giac :
\(\Rightarrow\) \(\frac{CD}{DB}=\frac{AC}{AB}\Rightarrow\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\Rightarrow\frac{CD}{CB}=\frac{AC}{AB+AC}\Rightarrow CD=\frac{AC.CB}{AB+AC}\left(1\right)\)
Mat khac \(\widehat{CAD}=\widehat{DAC}=\widehat{ABC}\Rightarrow\widehat{CDA}=2\widehat{ABC}\)
\(\Rightarrow\)\(\Delta DAC\approx\Delta ABC\left(g.g\right)\)
\(\Rightarrow\)\(\frac{CD}{CA}=\frac{AC}{BC}\Rightarrow CD.BC=AC^2\), thay CD tu (1) vao ta co :
\(AC.BC^2=AC^2\left(AB+AC\right)\Rightarrow BC^2=AC^2+AC.AB\)