Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2
Để phương trình có hai nghiệm phân biệt âm :
\(\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9>0\left(1\right)\\\dfrac{-2\left(m^2-1\right)}{9.2}< 0\left(2\right)\\\dfrac{1}{9}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2>9\\m^2-1>0\end{matrix}\right.\)
Với \(m>2\) thì \(\left(m^2-1\right)^2-9>\left(2^2-1\right)^2-9=0\) nên (1) thỏa mãn.
Với \(m>2\) thì \(m^2-1>2^2-1=3>0\) nên (2) thỏa mãn.
Vậy \(m>2\) phương trình có hai nghiệm âm.
Để phương trình có hai nghiệm thì:
\(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9\ge0\\9\ne0\end{matrix}\right.\)
Áp dụng định lý Viet ta được:
\(x_1+x_2=\dfrac{-2\left(m^2-1\right)}{9}=4\) \(\Leftrightarrow m^2-1=-18\)
\(\Leftrightarrow m^2=-17\) (loại)
Vậy không có giá trị m thỏa mãn.
\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m^2-1\right)\)
\(=4m^2-8m+4-8m^2+8\)
\(=-4m^2-8m+12\)
Để phương trình có hai nghiệm phân biệt thì -4m^2-8m+12>0
=>4m^2+8m-12<0
=>m^2+2m-3<0
=>(m+3)(m-1)<0
=>-3<m<1
\(A=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(\dfrac{2m-2}{2}\right)^2-4\cdot\dfrac{m^2-1}{2}\)
\(=\left(m-1\right)^2-2\left(m^2-1\right)\)
\(=m^2-2m+1-2m^2+2=-m^2-2m+3\)
\(=-\left(m^2+2m-3\right)\)
\(=-\left(m^2+2m+1-4\right)\)
\(=-\left(m+1\right)^2+4< =4\)
Dấu = xảy ra khi m=-1
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0