K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

A B C D E F

a, Vì E là trung điểm của AD => AE=ED=> EF là đường trung tuyến của tam giác AFD (1 )

Ta có : E là trung điểm AD, F là trung điểm BC => EF là đường trung bình của hình thang ABCD

=> EF//AB//DC

Vì EF//AB, AD_|_ AB => EF_|_AD=> EF là đường cao của tam giác AFD (2)

Ta có : AE=ED, EF_|_ AD => EF là đường trung trực của tam giác AFD (3)

Từ ( 1 ), (2), (3) => tam giác AFD cân tại F

b, Vì  tam giác AFD cân tại F => \(\widehat{FAD}=\widehat{FDA}\)

Ta có : \(\widehat{A}=\widehat{BAF}+\widehat{FAD}\)

           \(\widehat{D}=\widehat{CDF}+\widehat{FDA}\)

mà \(\widehat{A}=\widehat{D}=90^0\)

=> \(\widehat{BAF}=\widehat{CDF}\)

26 tháng 8 2021

Giải

Vì E là trung điểm AC

F là trung điểm BD

=> EF // CD // AB

=>góc AEF \(\perp\) CEF vuông

Xét \(\Delta\) AEF và CEF có 

:/\ AEF = /\ CEF = 90 độ

EF chung

AE = AC (gt)

=> \(\Delta\) AEF = CEF ( cạnh góc cạnh )

=>\(\Delta\) AFD là tam giác cân 

b, Vì \(\Delta\)AFD là \(\Delta\)cân nên 

\(\Rightarrow\)Góc FAD = góc FDA

Ta có : góc A = góc BAF + góc FAD

Góc D = góc CDF + góc FDA

mà góc A = góc D = 90 độ 

=> góc BAF = góc CDF 

26 tháng 8 2021

A A B C D F E

(Hình Minh Họa )

27 tháng 7 2018

A B C D . E F Giải E là trung điểm AC F là trung điểm BD => EF // CD // AB => góc AEF vuông góc CEF vuông Xét tam giác AEF và CEF có : /\ AEF = /\ CEF = 90 độ EF chung AE = AC (gt) => tam giác AEF = CEF ( cạnh góc cạnh ) => FA = FC => tam giác AFC cân tại F ( đpcm )

Hình thang ABCD có 

E là trung điểm của AD

F là trung điểm của BC

Do đó: EF là đường trung bình của hình thang ABCD

Suy ra: EF//AB//CD

mà AB\(\perp\)AD

nên EF\(\perp\)AD

Xét ΔFAD có 

FE là đường cao ứng với cạnh AD

FE là đường trung tuyến ứng với cạnh AD

Do đó: ΔFAD cân tại F

b) Ta có: \(\widehat{BAF}+\widehat{DAF}=90^0\)

\(\widehat{CDF}+\widehat{FDA}=90^0\)

mà \(\widehat{FAD}=\widehat{FDA}\)(ΔFAD cân tại F)

nên \(\widehat{BAF}=\widehat{CDF}\)

23 tháng 6 2018

a) Ta có È là đường trung bình của hình thang ABCD.

Þ EF//AB.

Suy ra EF ^ AD

Khi đó EF vừa trung tuyến, vừa là đường cao của tam giác AFD Þ ĐPCM.

b) Tam giác AFD cân tại F nên  E A F ^ = E D F ^

Suy ra  F A B ^ = C D F ^

12 tháng 7 2019

Có : ED = EB = BD/2 ; AF = CF = AC/2 .

⇒⇒ BDACBDAC = BD2CD2BD2CD2 = DECFDECF (1).

Gọi O là điểm giao của BD và AC .

Xét ΔΔ ABO có BD // AC , theo hệ quả của định lí Ta-lét

⇒⇒ DOBO=COAODOBO=COAO

⇒⇒ DODO+BO=COCO+AODODO+BO=COCO+AO ⇔⇔ DOBD=COACDOBD=COAC

⇒⇒ BDAC=DOCOBDAC=DOCO (2) .

Từ (1) và (2) ta đc : DECF=DOCODECF=DOCO

⇒⇒DOCO=DECF=DO−DECO−CF=OEOFDOCO=DECF=DO−DECO−CF=OEOF.

⇒⇒ OEOD=OFOCOEOD=OFOC

Xét ΔΔ OCD có :OEOD=OFOCOEOD=OFOC (c/m trên)

⇒⇒ EF // CD (định lí Ta-lét đảo) .

Mà KH ⊥⊥ EF ⇒⇒ KH ⊥⊥ CD .

Xét ΔΔ HCD có :

KH ⊥⊥ CD ; HC = HD

⇒⇒ ΔΔ HCD cân tại H (KH vừa là trung tuyến , vừa là đường cao của ΔΔ HCD ) .

cho k

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0