K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

a) Với a = 2 hàm số có dạng y = 2x + b.

Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:

    0 = 2.1,5 + b => b = -3

Vậy hàm số là y = 2x – 3

b) Với a = 3 hàm số có dạng y = 3x + b.

Đồ thị hàm số đi qua điểm (2; 2), nên ta có:

    2 = 3.2 + b => b = 2 – 6 = - 4

Vậy hàm số là y = 3x – 4

c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b

Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:

√3 + 5 = √3 . 1 + b => b = 5

Vậy hàm số là y = √3 x + 5

23 tháng 10 2021

Bài 1: 

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}-4a+b=0\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=3\end{matrix}\right.\)

22 tháng 12 2023

a: a=-2 nên y=-2x+b

Thay x=2,5 và y=0 vào y=-2x+b, ta được:

\(b-2\cdot2,5=0\)

=>b-5=0

=>b=5

Vậy: y=-2x+5

b: a=3 nên y=3x+b

Thay x=0 và y=-4/3 vào y=3x+b, ta được:

\(b+3\cdot0=-\dfrac{4}{3}\)

=>\(b=-\dfrac{4}{3}\)

Vậy: \(y=3x-\dfrac{4}{3}\)

c: Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-4x+3 nên \(\left\{{}\begin{matrix}a=-4\\b\ne3\end{matrix}\right.\)

Vậy: y=-4x+b

Thay x=-1 và y=8 vào y=-4x+b, ta được:

\(b-4\cdot\left(-1\right)=8\)

=>b+4=8

=>b=4

vậy: y=-4x+4

d: Thay x=0 và y=4 vào y=ax+b, ta được:

\(a\cdot0+b=4\)

=>b=4

Vậy: y=ax+4

Thay x=2 và y=3 vào y=ax+4, ta được:

\(a\cdot2+4=3\)

=>2a=3-4=-1

=>\(a=-\dfrac{1}{2}\)

Vậy: \(y=-\dfrac{1}{2}x+4\)

e: Thay x=0 và y=-2 vào y=ax+b, ta được:

\(a\cdot0+b=-2\)

=>b=-2

=>y=ax-2

Thay x=1 vào y=-4x+3, ta được:

\(y=-4\cdot1+3=-4+3=-1\)

Thay x=1 và y=-1 vào y=ax-2, ta được:

\(a\cdot1-2=-1\)

=>a-2=-1

=>a=1

Vậy: y=x-2

14 tháng 9 2023

d3//d1 => a=2 (b khác 1)

d3 cắt d2 tại điểm có tung độ bằng 2 Thay y=2 vào d2

=> 2=-x+4=> x=2 Thay y=2; x=2; a=2 vào d3

=> 2+2.2+b=> b=-6

 

28 tháng 10 2017

a, ĐỒ thị hàm số (1) đi qua điểm M(1/2;-2 )
<=> -2 = 1/2.a -3 
<=> 1/2.a= -2+3
<=> 1/2.a = 1
<=> a = 2 
b, Ta có tọa độ giao điểm của đồ thị hàm số ( 1) và độ thị hàm số y= - 3x + 2 ( đặt là 1' )là nghiệm của hệ phương trình :
\(\hept{\begin{cases}ax-3=-3x+2\\y=ax-3\end{cases}}\)mà (1 ) cắt (1') tại điểm có tung độ bằng 5 => y =5 => Ta có : \(\hept{\begin{cases}ax-3=-3x+2\\5=ax-3\end{cases}\Leftrightarrow\hept{\begin{cases}a.\frac{8}{a}-3=-3.\frac{8}{a}+2\\x=\frac{8}{a}\end{cases}}\Leftrightarrow a=-8}\)

a: Vì (d) song song với y=3x+1 nên a=1

Vậy: (d): y=x+b

Thay x=2 và y=5 vào (d), ta được:

b+2=5

hay b=3

b: Theo đề,ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=5\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=a+2=\dfrac{-5}{3}+2=\dfrac{1}{3}\end{matrix}\right.\)

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0