Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,m=3\Leftrightarrow\left(d_1\right):y=2x+1\\ b,\text{Gọi PT cần tìm là }\left(d_2\right):y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne1\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+b\\ \text{PT giao }Ox:y=0\Leftrightarrow x=-\dfrac{b}{2}\Leftrightarrow A\left(-\dfrac{b}{2};0\right)\Leftrightarrow OA=\left|\dfrac{b}{2}\right|\\ \text{PT giao }Oy:x=0\Leftrightarrow y=b\Leftrightarrow B\left(0;b\right)\Leftrightarrow OB=\left|b\right|\)
Gọi H là chân đường cao từ O tới \(\left(d_2\right)\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)
\(\Leftrightarrow\dfrac{4}{b^2}+\dfrac{1}{b^2}=1\\ \Leftrightarrow\dfrac{5}{b^2}=1\Leftrightarrow b^2=5\Leftrightarrow b=\pm\sqrt{5}\left(tm\right)\)
Vậy \(\left(d_2\right)\) có dạng \(\left(d_2\right):y=2x+\sqrt{5}\) hoặc \(\left(d_2\right):y=2x-\sqrt{5}\)
\(c,\text{Gọi điểm cần tìm là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=mx_0-x_0+m-2\\ \Leftrightarrow m\left(x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-1\end{matrix}\right.\Leftrightarrow A\left(-1;-1\right)\\ \text{Vậy }A\left(-1;-1\right)\text{ là điểm cố định mà }\left(d\right)\text{ đi qua với mọi }m\)
\(\text{PT giao }Ox:y=0\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{m-2}{m-1}\right|\\ \text{PT giao }Oy:x=0\Leftrightarrow y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\\ \text{Ta có }S_{OAB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\left|\dfrac{m-2}{m-1}\right|\cdot\left|m-2\right|\\ \Leftrightarrow S_{OAB}=\dfrac{\left(m-2\right)^2}{2\left|m-1\right|}\)
Đặt \(S_{OAB}=t\)
Với \(m\ge1\Leftrightarrow t=\dfrac{\left(m-2\right)^2}{2\left(m-1\right)}\Leftrightarrow2mt-2t=m^2-4m+4\)
\(\Leftrightarrow m^2-2m\left(2-t\right)+2t+4=0\)
PT có nghiệm \(\Leftrightarrow\Delta'=\left(2-t\right)^2-\left(2t+4\right)\ge0\)
\(\Leftrightarrow t^2-6t\ge0\Leftrightarrow t\left(t-6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}t\le0\\t\ge6\end{matrix}\right.\left(1\right)\)
Với \(m< 1\Leftrightarrow t=\dfrac{\left(m-2\right)^2}{2\left(1-m\right)}\Leftrightarrow2t-2mt=m^2-4m+4\)
\(\Leftrightarrow m^2+2m\left(t-2\right)+4-2t=0\)
PT có nghiệm \(\Leftrightarrow\Delta'=\left(t-2\right)^2-\left(4-2t\right)\ge0\)
\(\Leftrightarrow t^2-2t\ge0\Leftrightarrow t\left(t-2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}t\le0\\t\ge2\end{matrix}\right.\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow t\ge6\)
Vậy \(\left(S_{OAB}\right)_{min}=6\Leftrightarrow\dfrac{\left(m-2\right)^2}{2\left|m-1\right|}=6\)
\(\Leftrightarrow12\left|m-1\right|=m^2-4m+4\\ \Leftrightarrow\left[{}\begin{matrix}12\left(m-1\right)=m^2-4m+4\left(m\ge1\right)\\12\left(1-m\right)=m^2-4m+4\left(m< 1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2-16m+16=0\\m^2+8m-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=8\pm4\sqrt{3}\\m=-4\pm2\sqrt{6}\end{matrix}\right.\)
a: Vì (d1)//y=2x-1 nên a=2
Vậy: (d1): y=2x+b
Thay x=0 và y=0 vào (d1), ta được:
b+0=0
hay b=0