Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ra ít thôi bạn ơi,mình rảnh mình sẽ làm phần tự luận nhé ~~
A.Trắc nghiệm
1. Đơn thức 5x3y4 đồng dạng vs đơn thức sau :
a. (2 phần 3 x3y4)2 b. 8x3y4 c.-6x4y3 d.(0,2x3y)4
2. Cho biểu thức A = 9x3 + 3x + 2y2 với x=-2, y=4 thì gía trị của biểu thức A là :
a.-110 b.-62 c.-46 d.-28
P/S:Lẽ ra mình không làm đâu,tại vì chưa thấy ai sol cả nhé !
2. Cho biểu thức A = 9x3 + 3x + 2y2 với x=-2, y=4 thì gía trị của biểu thức A là :
a.-110 b.-62 c.-46 d.-28
B. Tự luận
C1: Cho đơn thức A (\(\frac{-5}{6}\) x2y3)(\(\frac{-3}{10}\) x3y)(2x2y)
a) THU GỌN ĐƠN THỨC A
A = (\(\frac{-5}{6}\) x2y3)(\(\frac{-3}{10}\) x3y)(2\(x^2y\))
=\(\frac{-3}{10}\)\(\frac{-5}{6}\).\(2\)(\(x^2 y^3 . x^3 y . x^2 y\))
= \(\frac{15}{30}\)(\(x^2 y^3 . x^3 y . x^2 y\))
=\(\frac{1}{2}\)\(x^7 y^4\)
b) hệ quả : \(\frac{1}{2}\)
phần biến : \(x^7 y^4\)
bậc của đơn thức A là bậc 7
![](https://rs.olm.vn/images/avt/0.png?1311)
f=\(\frac{4}{9}x^{6^{ }}y^4.\frac{1}{2}x^2y^{5^{ }}\)=\(\frac{2}{9}x^{8^{ }}y^9\)
phần hệ số \(\frac{2}{9}\),phần biến x8y9
Tại x=-1,y=1 lúc đó f=\(\frac{2}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(P=\frac{16x^4y^6}{9}.\frac{9x^2y^4}{4}=4x^6y^{10}\), đa thức bậc 16, hệ số là 4, biến là \(x^6y^{10}\)
Tại x=-1, y=1 thay vào ta được: P=4
2) \(f\left(x\right)=x^5+x^3-4x^2-2x+5\)
\(g\left(x\right)=x^5-x^4+2x^2-3x+1\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)=2x^5-x^4+x^3-2x^2-5x+6\)
3) \(B=\frac{x^2+y^2+2+5}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\le1+\frac{5}{0+0+2}=\frac{7}{2}\)
Do B LN <=> \(\frac{5}{x^2+y^2+2}\)LN <=> \(x^2+y^2+2\)NN <=> x=y=0
4) Ta thấy 51x+26y=2000
CHÚ Ý: VP chẵn => VT chẵn mà 26y chẵn nên => 51x chẵn => x=2
Thay vào ta tìm được y=73 ( thỏa mãn là số nguyên tố)
vậy x=2, y=73
5) Nhận xét: VP \(\ge\)0 => VT \(\ge\)0 => \(y^2\le25\Rightarrow y=0,1,2,3,4,5\)
Mà VP chẵn => y lẻ => y=1,3,5
Thay y=1,3,5 vào ta được y=5, x=2009 là thỏa mãn