Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)
\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{2}{2x+1}\)
b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)
c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)
+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)
+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)
Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)
ta có:
A = \(\left(\dfrac{x+3}{2x+2}+\dfrac{3}{1-x^2}-\dfrac{x+1}{2x-2}\right):\dfrac{3}{2x^2-2}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{x^2-1}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x^2-1\right)}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}-\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{x^2-x+3x-3-6-x^2-2x-1}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(-\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{2\left(x+1\right)\left(x-1\right)}{3}\)
= \(-\dfrac{10}{3}\)
Vậy phương trình trên ko phụ thuộc vào biến
Bài 2 .
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) Sai đề hay sao ý
c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)
d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
.....
\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1-x^{32}}\)
a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)
b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)
\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)
\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)
\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)
a) Điều kiện xác định :
x ≠ 3; x ≠ -3; x ≠ 0
M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\): ( \(\dfrac{x}{x\left(x-3\right)}\) - \(\dfrac{x-3}{x\left(x-3\right)}\) )
M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\) : ( \(\dfrac{x-x+3}{x\left(x-3\right)}\) )
M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\) : \(\dfrac{3}{x\left(x-3\right)}\)
M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\) = \(\dfrac{x}{\left(x-3\right)\left(x+3\right)}\) - \(\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\)
M = \(\dfrac{3x}{3\left(x-3\right)\left(x+3\right)}\) - \(\dfrac{x\left(x-3\right)^2}{3\left(x-3\right)\left(x+3\right)}\)
M = \(\dfrac{3x-x\left(x-3\right)^2}{3\left(x-3\right)\left(x+3\right)}\) = \(\dfrac{3x-x\left(x^2-6x+9\right)}{3\left(x-3\right)\left(x+3\right)}\)
M = \(\dfrac{3x-x^3+6x^2-9x}{3\left(x-3\right)\left(x+3\right)}\) = \(\dfrac{-x^3+6x^2-6x}{3\left(x-3\right)\left(x+3\right)}\)
Mk đang mệt sai thì bạn thông cảm cho mk.
a: \(M=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}:\dfrac{x-x+3}{x\left(x-3\right)}\)
\(=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\cdot\dfrac{x\left(x-3\right)}{3}\)
\(=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\)
\(=\dfrac{3x-x\left(x^2-6x+9\right)}{3\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x-x^3+6x^2-9x}{3\left(x-3\right)\left(x+3\right)}=\dfrac{-x^3+6x^2-6x}{3\left(x-3\right)\left(x+3\right)}\)
b: Để M>1/2 thì M-1/2>0
=>\(\dfrac{-x^3+6x^2-6x}{3\left(x^2-9\right)}-\dfrac{1}{2}>0\)
=>\(\dfrac{-2x^3+12x^2-12x-3x^2+9}{6\left(x^2-9\right)}>0\)
=>\(\dfrac{-2x^3+9x^2-12x+9}{x^2-9}>0\)
TH1: \(\left\{{}\begin{matrix}-2x^3+9x^2-12x+9>0\\x^2-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x< -3\)
TH2: \(\left\{{}\begin{matrix}-2x^3+9x^2-12x+9< 0\\x^2-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\-3< x< 3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a: \(\Leftrightarrow5\left(x+1\right)\left(x-1\right)=2x-2-3x-3=-x-5\)
\(\Leftrightarrow5x^2-5+x+5=0\)
=>x(5x+1)=0
=>x=0 hoặc x=-1/5
b: \(\Leftrightarrow x^2-x-\left(2x-3\right)\left(x+1\right)=2x+3\)
\(\Leftrightarrow x^2-x-2x^2-2x+3x+3=2x+3\)
\(\Leftrightarrow-x^2+3=2x+3\)
=>-x(x+2)=0
=>x=0(nhận) hoặc x=-2(nhận)
c: \(\Leftrightarrow4x^2-25=0\)
=>(2x-5)(2x+5)=0
=>x=5/2 hoặc x=-5/2
Bài 1:
a: \(P=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{-2x}{1}\cdot\dfrac{x-1}{4}=-\dfrac{x\left(x-1\right)}{2}\)
b: Để \(\dfrac{P-4}{5}=x\) thì P-4=5x
=>P=5x+4
\(\Leftrightarrow-\dfrac{x\left(x-1\right)}{2}=5x+4\)
=>-x2+x=10x+8
=>x2-x=-10x-8
=>x2+9x+8=0
=>x=-8(nhận) hoặc x=-1(loại)