Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link ảnh: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1222).png
a) Gọi U là giao điểm của AD và BM
Dễ có: \(\widehat{ACB}=\widehat{ADB}=90^0\)(các góc nội tiếp chắn nửa đường tròn) hay \(\Delta ACU\)vuông tại C
và \(\Delta ABU\)cân tại B (có BD vừa là đường cao vừa là phân giác) => D là trung điểm của AU
\(\Delta ACU\)vuông tại C có CD là trung tuyến (cmt) nên CD = AD => \(\widehat{CAD}=\widehat{ABD}\)(góc nội tiếp chắn các cung bằng nhau)
b) \(\Delta ABU\)có ID là đường trung bình nên ID // BU hay IK // BM
\(\Delta ABM\)có I là trung điểm của AB, IK // BM nên K là trung điểm của AM
\(\Delta ACM\)vuông tại C có CK là trung tuyến nên \(CK=\frac{1}{2}AM\)(đpcm)
c) Ta có: \(AC+BC\le\sqrt{2\left(AC^2+BC^2\right)}=\sqrt{2AB^2}=2\sqrt{2}R\)
\(\Rightarrow AB+AC+BC\le\left(2\sqrt{2}+2\right)R\)
Vậy chu vi tam giác ABC lớn nhất bằng \(\left(2\sqrt{2}+2\right)R\)đạt được khi AC = BC hay AB = AM = 2R
Bài 1
a) A = \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\) (ĐK: x ≥ 0; x ≠ 4)
↔ A = \(\dfrac{x+2-\sqrt{x}+\sqrt{x}+2}{x-4}\)
↔ A = \(\dfrac{x+4}{x-4}\)
Để A = 2 ↔ \(\dfrac{x+4}{x-4}\) = 2 (ĐK: x ≠ 4)
→ \(x+4=2\left(x-4\right)\)
↔ \(2x-x=4+8\)
↔ \(x=12\)
Vậy x = 12 thì A = 2
b) Để A < 1
↔ \(\dfrac{x+4}{x-4}\) < 1
→ \(x+4\) < \(x-4\)
↔ 0x < -8 (vô lý)
Vậy không có giá trị của x nào thỏa mãn A < 1