Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2=100\)
\(BC=10\)
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
b góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c => \(\frac{AB}{HB}=\)\(\frac{BC}{BA}\) => \(AB^2=HB.BC\)
a) ADĐL pitago vào tam giác vuông DCB , có :
BC2 + DC2 = DB2
=> 62 + 82 = BD2
=> BD2 = 100
=> BD = 10 cm
b)
Xét tam giác ADB và tam giác AHD , có :
A^ = H^ = 90O
D^ ; góc chung
=> tam giác AHD ~ tam giác BAD (g.g)
c)
Vì tam giác AHD ~ tam giác BAD ( câu b )
=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)
=> AD2 = HD . BD
d)
a) ΔABD vuông tại A (ABCD là hình chữ nhật)
⇒DB2=AB2+AD2(Đinh lí pitago)
DB2=82+62
⇔DB=\(\sqrt{100}\)=10(cm)
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
A B C H E D 9 12
a.
Ta có tam giác ABC vuông tại A
=> BC2 = AB2 + AC2
=> BC2 = 92 + 122
=> BC2 = 225
=> BC = 15 (cm)
Ta có BD là phân giác của góc ABC
=> \(\dfrac{DA}{DC}=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}\)
\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{8}=\dfrac{12}{8}=\dfrac{3}{2}\)
\(\Rightarrow DA=\dfrac{3.3}{2}=4,5\left(cm\right)\)
\(DC=\dfrac{3.5}{2}=7,5\left(cm\right)\)
b. ko rõ đề-.-
b.
Xét tam giác BEH và tam giác BCI có:
Góc H = C = 90o
Do đó: tam giác: BEH~BCI (g.g)
c.
Ta có tam giác BEH~BCI
=> \(\dfrac{BE}{BC}=\dfrac{BH}{BI}\Rightarrow BE.BI=BC.BH\) (1)
Ta có: \(\dfrac{CB}{BH}=\dfrac{CH}{BH}\Rightarrow CB.BH=BH.CH\) (2)
Từ (1) và (2) cộng vế theo vế ta được:
\(BE.BI+CB.BH=CB.BH+CB.CH\)
\(\Rightarrow BE.BI+BC.CH=BC\left(BH+CH\right)\)
\(\Rightarrow BE.BI+CB.CH=BC^2\)
Bài 3 :
a) Xét \(\Delta ABDvà\Delta CDB\) có :
\(\left\{{}\begin{matrix}\widehat{DAB}=\widehat{BCD}=90^o\\\dfrac{AD}{AB}=\dfrac{CB}{CD}\left(=\dfrac{3}{4}\right)\end{matrix}\right.\)
=> \(\Delta ABD\sim\Delta CBD\left(c.g.c\right)\) (1)
Xét \(\Delta ABDvà\Delta HBA\) có :
\(\left\{{}\begin{matrix}\widehat{DAB}=\widehat{AHB}=90^o\\\widehat{B}:chung\end{matrix}\right.\)
=> \(\Delta ABD\sim\Delta HBA\left(g.g\right)\) (2)
Từ (1) và (2) => \(\Delta AHB\sim\Delta BCD\left(\sim DAB\right)\)
b) Xét \(\Delta ADHvà\Delta BDA\) có :
\(\left\{{}\begin{matrix}\widehat{D}:Chung\\\widehat{DHA}=\widehat{DAB}=90^o\end{matrix}\right.\)
=> \(\Delta ADH\sim\Delta BDA\left(g.g\right)\)
\(=>\dfrac{AD}{BD}=\dfrac{DH}{DA}\)
=> \(AD^2=DH.BD\) (đpcm)
Bài 1:
a: =>5x-10=3x+3
=>2x=13
hay x=13/2
b: \(\Leftrightarrow2x\left(x-2\right)+3\left(x+1\right)=2\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2-4x+3x+3=2x^2-2x-4\)
=>-x+3=-2x-4
=>x=-7
c: =>2x+7=3 hoặc 2x+7=-3
=>2x=-4 hoặc 2x=-10
=>x=-2 hoặc x=-5