Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △BAH vuông tại H và △CAH vuông tại H
Có: AH là cạnh chung
AB = AC (gt)
=> △BAH = △CAH (ch-cgv)
=> BH = CH (2 cạnh tương ứng)
Mà H nằm giữa B, C
=> H là trung điểm BC
Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2
=> AH2 = 102 - 62
=> AH2 = 64
=> AH = 8 (cm)
b, Ta có: MH = MB + BH và HN = HC + CN
Mà BH = HC (cmt) ; MB = CN (gt)
=> MH = HN
Xét △MHA vuông tại H và △NHA vuông tại H
Có: AH là cạnh chung
MH = HN (cmt)
=> △MHA = △NHA (2cgv)
=> HMA = HNA (2 góc tương ứng)
Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A
c, Xét △MBE vuông tại E và △NCF vuông tại F
Có: EMB = FNC (cmt)
MB = CN (gt)
=> △MBE = △NCF (ch-gn)
=> MBE = NCF (2 góc tương ứng)
d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)
=> AH là phân giác của MAN
Ta có: AE + EM = AM và AF + FN = AN
Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)
=> AE = AF
Xét △EAK vuông tại E và △FAK vuông tại F
Có: AK là cạnh chung
AE = AF (cmt)
=> △EAK = △FAK (ch-cgv)
=> EAK = FAK (2 góc tương ứng)
=> AK là phân giác EAF => AK là phân giác MAN
Mà AH là phân giác của MAN
=> AK ≡ AH
=> 3 điểm A, H, K thẳng hàng
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow AB=AC;\widehat{ABC}=\widehat{ACB}\) (Tính chất tam giác cân).
Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}=180^o-\widehat{ABC}.\\\widehat{ACE}=180^o-\widehat{ACB}.\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right).\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}.\)
Xét \(\Delta ABD\) và \(\Delta ACE:\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right).\\ AB=AC\left(cmt\right).\\ BD=CE\left(gt\right).\\ \Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right).\)
\(\Rightarrow AD=AE\) (2 cạnh tương ứng).
b) Xét \(\Delta BMD\) vuông tại M và \(\Delta CNE\) vuông tại N:
\(BD=CE\left(gt\right).\\ \widehat{MDB}=\widehat{NEC}\left(\Delta ABD=\Delta ACE\right).\)
\(\Rightarrow\Delta BMD=\Delta CNE\) (cạnh huyền - góc nhọn).
c) Ta có: \(\left\{{}\begin{matrix}AN=AE-NE.\\AM=AD-MD.\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AE=AD\left(\Delta ACE=\Delta ABD\right).\\NE=MD\left(\Delta BMD=\Delta CNE\right).\end{matrix}\right.\)
\(\Rightarrow AN=AM.\)
Mọi người trả lời hộ mình bốn phần nha, combo cả hình nữa nha.Cảm ơn mọi người
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
b: Xét ΔBMD vuông tại M và ΔCNE vuông tại N có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBMD=ΔCNE
c: Ta có: ΔBMD=ΔCNE
nên DM=EN
Ta có: AM+MD=AD
AN+NE=AE
mà AD=AE
và DM=EN
nên AM=AN
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC