Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.
Xét:
`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`
`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`
`=>A+B>2`
Mà `1 2013/2014<2`
`=>A+B>1 2013/2014`
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 1:
\(\dfrac{-13}{38}\) và \(\dfrac{29}{-88}\)
\(\dfrac{-13}{38}=\dfrac{-13.29}{38.29}=\dfrac{-377}{1102}\)
\(\dfrac{29}{-88}=\dfrac{-29}{88}=\dfrac{-29.13}{88.13}=\dfrac{-377}{1144}\)
Vì \(\dfrac{-377}{1102}< \dfrac{-377}{1144}\) nên \(\dfrac{-13}{38}< \dfrac{29}{-88}\)
\(\dfrac{-18}{31}\) và \(\dfrac{-1818}{3131}\)
\(\dfrac{-18}{31}\)
\(\dfrac{-1818}{3131}=\dfrac{-1818:101}{3131:101}=\dfrac{-18}{31}\)
Vì \(\dfrac{-18}{31}=\dfrac{-18}{31}\) nên \(\dfrac{-18}{31}=\dfrac{-1818}{3131}\)
Bài 2:
a) \(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-4+-3}{156}=\dfrac{-7}{156}\)
b) \(\dfrac{-6}{9}+\dfrac{-12}{16}=\dfrac{-2}{3}+\dfrac{-3}{4}=\dfrac{-8}{12}+\dfrac{-9}{12}=\dfrac{-17}{12}\)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
A=(1/2^2-1) (1/3^2-1) (1/4^2-1) .... (1/100^2-1)
A=(1/2^2-2^2/2^2) (1/3^2-3^2/3^2) ...... (1/100^2-100^2/100^2)
A=1-2^2/2^2 . 1-3^2/3^2 .... 1-100^2/100^2
A=-(2^2-1/2^2 . 3^2-1/3^2 ..... 100^2-1/100^2)
A=-(1.3/2^2 x 2.4/3^2 ..... 99.101/100^2)
A=-(1.3.2.4.....99.101/2.2.3.3.....100.100)
A=-[(1.2.3....99).(3.4.5.....101) / (2.3.4...100) . (2.3.4...100) ]
A=-101/200 < -1/2
Có chút nhầm lẫn