Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;0\right\}\end{matrix}\right.\)
Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
a) ĐKXĐ: \(x\ge0;x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
Mình làm mấy bài rút gọn thôi nhé :v (mấy cái kia mình làm sợ không đúng)
\(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1-\left(x+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}+1-x-2-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+0-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left[-\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(-1\right)}{x+\sqrt{x}+1}\\ =-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
Bài 3:
\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{\left(2x+\sqrt{x}\right)\sqrt{x}}{x}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+2\left(\sqrt{x}+1\right)\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x\left(2\sqrt{x}+1\right)}{x}+2\sqrt{x}+2\)
\(=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+1\\ =\dfrac{x-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{2x+1}{x+\sqrt{x}+1}\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
Lời giải:
a. ĐKXĐ: $x>0; x\neq 1$
b. \(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]: \left[\frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)} =\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
c.
$P<0\Leftrightarrow \frac{x-1}{\sqrt{x}}<0$
$\Leftrightarrow x-1<0$
$\Leftrightarrow x<1$. Kết hợp đkxđ suy ra $0< x<1 $
a) điều kiện xát định \(x\ge0;x\ne1\)
b) \(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}-1\right)-\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2x-2\sqrt{x}+x\sqrt{x}-x-x\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{x-2\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}.\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}.\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\Leftrightarrow\dfrac{x+\sqrt{x}+1}{x^2+x\sqrt{x}-\sqrt{x}-1}\)
a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm
Từ đó suy ra căn thức vô nghiệm
Vậy không có giá trị nào của x để biểu thức trên xác định
b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)
\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)
c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)
Rồi làm như câu b
d) \(\sqrt{\dfrac{2-x}{x+3}}\)
Để biểu thức trên xác định thì
\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)
e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi )
\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)
Để biểu thức trên xác định thì \(x\ge0\) và \(x-3\ge0\Leftrightarrow x\ge3\)
Bữa sau mình làm tiếp
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(M=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{x}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)\)
c: \(M=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/4