Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
`16 + (27 - 7.6 ) - (94 -7 - 27.99)`
`= 16+ 27 - 7.6 - 94 + 7 + 27.99`
`= 16 + 27(99 +1) - 7(6-1) - 94`
`= -78 + 27.100 - 7.5`
`= 2587`
2.
`A = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/97.100`
`A= 2(1/1.4 + 1/4.7 + 1/7.10 +...+1/97.100)`
`3A = 2 (3/1.4 + 3/4.7 + 3/7.10+...+ 3/97.100)`
`3/2 A = 1 - 1/4 + 1/4 - 1/7 +...+ 1/97 - 1/100`
`3/2A = 1 - 1/100`
`3/2 A= 99/100`
`A= 99/100 : 3/2`
`A=33/50`
Vậy `A= 33/50`
1.16+(27-7.6)-(94-7-27.99)=16+27-7.6-94+7+27.99
=(27+27.99)+(27+7-94)+16
=27.100-60+16
=2700-44=2656
2.A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
=\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
a) \(16+\left(27-7\cdot6\right)-\left(94\cdot7-27\cdot99\right)\)
\(=16+27-7\cdot6-94\cdot7+27\cdot99\)
\(=16+27\left(1+99\right)-7\left(6+94\right)=16+2700-700=2016\)
b)\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{7}+\frac{2}{7}-\frac{2}{10}+...+\frac{2}{97}-\frac{2}{100}\right)\)
\(=\frac{1}{3}\left(2-\frac{2}{100}\right)=\frac{1}{3}\cdot\frac{99}{50}=\frac{33}{50}\)
16+(27-7.6)-94.7-27.99
=16+27-7.6-94.7-27.99
16+27(1+99)-7(6+94)=+2700-700=2016
đúng thì tk cho mk nha
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
\(A=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{97.100}\)
\(A=9\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)
\(A=9.\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...-\frac{1}{100}\right)\)
\(A=\frac{9}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(A=3\left(\frac{99}{100}\right)=\frac{297}{100}\)
Ta có: \(A=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)
\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
Nhận xét: \(\frac{a}{x.\left(x+a\right)}=\frac{1}{x}-\frac{1}{x+a}\)
Do đó: \(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(\frac{100}{100}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\frac{99}{100}\)
\(=\frac{33}{50}\)
Vậy,\(A=\frac{33}{50}\)
\(\text{Ta có: }A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)
\(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\)
\(\Rightarrow\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow\frac{3}{2}A=1-\frac{1}{100}\)
\(\Rightarrow\frac{3}{2}A=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{100}:\frac{3}{2}\)
\(A=\frac{99}{100}.\frac{2}{3}=\frac{33}{50}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}\right)+\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{2}{3}.\left(\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}\)
\(A=\frac{33}{50}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=2\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)
\(A=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=2\left(1-\frac{1}{100}\right)\)
\(A=2.\frac{99}{100}=..............\)
Tự làm nốt nha
what?