\(a^2-b^2\) ,  a,b thuộc N , a > b ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

Bài 30 :

a ) Ta có : 

 ( a + b ) ( a - b )

= ( a + b ) . a - ( a + b ) . b

= a . a + ab - ab - b . b

= a2 + ab - ab - b2

= a2 - b2 ( điều phải chứng minh )

b ) M = 100- 992 + 982 - 972 + 962 - 952 + ..... + 42 - 32 + 22 - 12

     M = 199 + 195 + 191 + ...... + 7 + 3

     M = ( 199 + 3 ) x [ ( 199 - 3 ) : 4 + 1 ] : 2 

     M = 202 x 50 : 2

     M = 10100 : 2

     M = 5050

21 tháng 9 2017

30) Ta có : \(\left(a+b\right)\left(a-b\right)\)

\(=\left(a+b\right)a-\left(a+b\right).b\)

\(=a^2+ab-ab-b^2\)

\(=a^2-b^2\left(đpcm\right)\)

31 tháng 1 2019

bài 1.

a,vì /x/<=3 nên x thuộc{+1;+2;+3}

tổng là 0 vì tổng mỗi cặp số đối nhau bằng 0

vậy tổng là 0

31 tháng 1 2019

tôi ko có thời gian chỉ trả lời phần a thoi phần b tương tự

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

7 tháng 6 2019

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)

\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)

\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)

Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)

Vậy...

P/s: Hoq chắc

7 tháng 6 2019

#)Giải :

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)

\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)

\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)

2 tháng 7 2016

a) \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow3A=A+2A=2^{101}-2\)

\(\Rightarrow A=\frac{2^{101}-2}{3}\)

b) \(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

\(\Rightarrow4B=B+3B=3^{101}+1\)

\(\Rightarrow B=\frac{3^{101}+1}{4}\)

2 tháng 7 2016

Mk nghĩ bạn làm sai

17 tháng 2 2020

a. A= -2012+(-596)+(-201)+496+301

      = -2012+(496-596)+(301-201)

      = -2012+(-100)+100

      = -2012

17 tháng 2 2020

c. 

    Tổng C có số số hạng là:

          (100-1):1+1=100

    Có số cặp là:

          100:2=50(cặp)

Ta có: C= 1-2+3-4+...+99-100

             = (1-2)+(3-4)+...+(99-100)

             = (-1)+(-1)+...+(-1)

             = (-1).50

             =-50

20 tháng 10 2019

A=2100-1

=>2100-1+1=2100

Vậy n=100

Ta có:A=1+2+22+...+299

=(1+2)+(22+23)+...+(298+299)

=1(1+2)+22(1+2)+...+298(1+2)

=1.3+22.3+...+298.3

Vì 3 chia hết cho 3 nên 1.3+22.3+...+298.3 chia hết cho 3

hay A chia hết cho 3

Vậy A chia hết cho 3

20 tháng 10 2019

Ta có:A=1+2+22+...+299

=>2A=2(1+2+22+...+299)

=2A=2+22+23+...+2100

=>2A-A=(2+22+23+...+2100)-(1+2+22+...+299)

=>A=2100-1

Vậy A=2100-1

Mà B=2100

=>A<B

Vậy A<B