K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Bài 1 : 

a.Ta có 1 - 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -2(1/2+1/4+1/6+......+1/200) 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -(1+1/2+1/3+.....+1/100) 
=1/101+1/102+....+1/199+1/200

b.Tổng quát bạn tự làm nhé

Bài 1 :

Ta giải bài toán tổng quát :chứng minh rằng : với n là số tự nhiên lớn hơn 1 , ta luô có :

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}\)\(-\frac{1}{2n}\)

\(=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)

Thật vậy ,kí hiệu \(S2n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}\)thì ta có :

\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2n}=S2n-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}\right)\)

\(=S2n-\left(1+\frac{1}{2}+...+\frac{1}{n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+..+\frac{1}{2n}\)

Bài toán ở câu a chỉ là trường hợp riêng của bài toán trên với \(n=100\)

Bài 2 :

Đặt \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{15}\left(1\right)\)

\(T=1.3.5.7...15\)( Tích các số lẻ bé hơn hoặc bằng 15 )

Nhân 2 vế của ( 1 ) với 2^2 .T ta được :

\(S.2^2T=\frac{2^2T}{2}+\frac{2^2T}{3}+\frac{2^2T}{4}+...+\frac{2^2T}{15}\left(2\right)\)

Dễ thấy tất cả các số hạng ở vế phải của ( 2) ,trừ số hặng \(\frac{2^2T}{2^3}\)đều là số tự nhiên ,suy ra vế phải có tổng không phải là số tự nhiên .Do đó S không phải là số tự nhiên

Chúc bạn học tốt ( -_- )

13 tháng 6 2018

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1996}+\frac{1}{1997}+\frac{1}{1998}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)

\(=\frac{1999}{1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+...+\frac{1999}{999.1000}=1999.\left(\frac{1}{1998}+\frac{1}{2.1997}+...+\frac{1}{999.1000}\right)⋮1999\)

\(\Rightarrow\frac{m}{n}⋮1999\Rightarrow m⋮1999\)

BTTQ: Nếu \(\frac{m}{n}=1+\frac{1}{2}+...+\frac{1}{k}\left(k\inℕ^∗\right)\)thì m\(⋮\left(k+1\right)\)

13 tháng 6 2018

Ta có : \(\frac{m}{n}\)\(1+\frac{1}{2}+...+\frac{1}{1998}\)

= ( 1 + 1/1998 ) + ( 1/2 + 1/1997 ) + ... + ( 1/99 + 1/1000 )

\(\frac{1999}{1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.1000}\)

\(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)( a1 ; a2 ; ... là các thừa số phụ tương ứng của các phân số )

\(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)=> tử \(⋮\)1999

Vì 1999 là số nguyên tố mà n k có thừa số 1999 =>  n ko chia hết cho 1999 . Dù rút gọn về phân số tối giản thì tử \(⋮\)1999 hay m \(⋮\)1999

Do đó dạng tổng quát là : 

m/n = 1 + 1/2 + 1/3 + ... + 1/k => m \(⋮\)k ( k thuộc N* )

6 tháng 5 2016

Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

Chúc bạn học tốt!hihi

6 tháng 5 2016

Tks bạn nhé Nguyễn Thế Bảo

9 tháng 4 2017

Ta có:

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1998}\)

\(=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)

\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.100}\)

Quy đồng phân số, ta chọn Mẫu chung la : 1 x 2 x 3 x 4 x ... x 1997 x 1998

Gọi các thừa số phụ tương ứng là a1, a2, a3, ..., a999

\(\frac{m}{n}=\frac{1999\left(a1+a2+a3+...+a999\right)}{1.2.3.4.....1997.1998}\)

Do 1999 là số nguyên tố. Sau khi rút gọn vẫn còn thừa số 1999 suy ra m chia hết cho 1999

9 tháng 4 2017

cảm ơn bn nha

13 tháng 4 2019

Tham khảo ở link này bạn nhé :

https://olm.vn/hoi-dap/detail/5631756599.html

~ Study well ~

18 tháng 3 2018

Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Ta có đpcm

18 tháng 3 2018

Bạn Trí làm sai rồi!

Đề bài không yêu cầu chứng minh như bạn

28 tháng 2 2016

lop 6 phai ko

28 tháng 2 2016

Có cần tính ra không?