K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

17 tháng 6 2017

mk k bt

17 tháng 6 2017

1 / xét tam giác ABH đồng dạng  vs CAH trg hợp g-g suy ra AB/AC =BH/AH 

                                                                                <=> 3 /7 =BH /42 

                                                                                           => BH =18 cm 

2 áp dụng hệ thức lượng AH^2 =BH .CH từ bh/ch =9/16 =>CH= 16BH/9 

TA CÓ AH ^2 =16BH^2 /9 SUY RA BH =36 cm SUY RA CH = 64 cm áp dụng pita go suy ra AB ,AC hoặc hệ thức lg cũng đc

15 tháng 10 2017

Nếu BC2 = AC+ AB2 thì tam giác ABC vuông tại A. (Pytago)

ta có: 7,52 =  4,52 + 62 => tam giác ABC vuông tại A.

Tam giác ABC vuông tại A, đường cao AH nên: AH.BC = AC.AB <=> AH = (AC.AB)/BC <=> AH = 3,6 cm

Ta có: AB2 = BC.BH <=> BH = AB2 /BC <=> 36/7,5 = 4,8 cm

=> HC = BC - BH = 7.5 - 4.8 = 2.7 cm

15 tháng 10 2017

vẽ hình nữa nha

12 tháng 9 2019

Giúp mk nhanh nha

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)