Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn cứ tính 2 vế là xong mà:
a) x\(\in\){1;2;3;4;5;6;7}
b) x=0
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
1,=0 . [2017/2018+2018/2019]
=>0
2,TH1 x-3=0=>x=3
TH2 y-4=0=>y=4
3, -2/4 = -x/10 = 16/y
=>-1/2 = -x/10 = 16/y
=>-1/2 = -x/10 => -5/10 = -x/10 => x=5
-1/2 = 16/y => 16/-32 = 16/y => y = -32
Bài 1:
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)
\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{100}}\)
Lây vế trừ vế, ta được:
\(A-\dfrac{1}{5}A=\dfrac{4}{5}A\)
\(\dfrac{4}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{100}}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{5}-\dfrac{1}{5^{100}}}{\dfrac{4}{5}}=\dfrac{\dfrac{1}{5}.\left(1-\dfrac{1}{5^{99}}\right)}{\dfrac{1}{5}.4}=\dfrac{1-\dfrac{1}{5^{99}}}{4}\)
Vậy \(A=\dfrac{1-\dfrac{1}{5^{99}}}{4}\).
Chúc bạn học tốt!
Bài 2:
Có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)
\(\Leftrightarrow B=273+...+3^{1986}.273\)
\(\Leftrightarrow B=273\left(1+...+1986\right)\)
Vì \(273⋮13\)
Nên \(B=273\left(1+...+1986\right)⋮13\)
Vậy \(B⋮13\)
Lại có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\)
\(\Leftrightarrow B=2460+...+3^{1984}.2460\)
\(\Leftrightarrow B=2460\left(1+...+3^{1984}\right)\)
Vì \(2460⋮41\)
Nên \(B=2460\left(1+...+3^{1984}\right)⋮41\)
Vậy \(B⋮41\).
Chúc bạn học tốt!
\(A=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{-5}{7}\)
\(=\dfrac{-5}{7}+\dfrac{-5}{7}+1=\dfrac{-3}{7}\)
\(B=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)
\(=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)
\(=\dfrac{7}{10}.\dfrac{5}{28}.20=\dfrac{5}{2}.\)
Ta có :
A = \(\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\)
= \(\dfrac{5}{7}.\dfrac{-2}{11}-\dfrac{5}{7}.\dfrac{9}{11}+\dfrac{5}{7}+1\)
= \(\left(\dfrac{5}{7}.\dfrac{-2}{11}-\dfrac{5}{7}.\dfrac{9}{11}+\dfrac{5}{7}\right)+1\)
= \(\dfrac{5}{7}.\left(\dfrac{-2}{11}-\dfrac{9}{11}+1\right)+1\)
= \(\dfrac{5}{7}.0+1\)
= 1
B = \(0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)
= \(\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)
= \(\left(\dfrac{7}{10}.20\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).\dfrac{5}{28}\)
= 14.1.\(\dfrac{5}{28}\)
= \(\dfrac{5}{2}\)
Vậy A = 1
B = \(\dfrac{5}{2}\)
a, \(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
Vậy \(M=\dfrac{32}{99}\)
b, Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2012^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
\(=1-\dfrac{1}{2012}< 1\) (1)
Do mỗi phân số đều lớn hơn 0 nên \(A>0\) (2)
Từ (1), (2) \(\Rightarrow0< A< 1\)
\(\Rightarrow A\notin N\left(đpcm\right)\)
Vậy...
a, \(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{2}{97}-\dfrac{2}{99}\\ =\dfrac{1}{3}-\dfrac{2}{99}=\dfrac{31}{99}\)