Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy của 3 đội lần lượt là a, b, c (máy) (a,b,c thuộc N*)
Theo đề bài ta có :
4a = 6b = 8c
\(\Rightarrow\frac{4a}{24}=\frac{6b}{24}=\frac{8c}{24}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a-b}{6-4}=\frac{2}{2}=1\)
\(\Rightarrow\begin{cases}a=1.6=6\\b=1.4=4\\c=1.3=3\end{cases}\)
Vậy số máy của 3 đội lần lượt là 6 máy. 4 máy, 3 máy
Bạn tham khảo ở đây nhé Câu hỏi của lamlinh - Toán lớp 7 - Học toán với OnlineMath
Gọi số máy của ba đội theo thứ tự là :x1,x2,x3 (máy)
Theo đề bài ta có : x1-x2=2
Vì các máy có cùng năng suất nên số máy và số ngày hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Do đó ta có :4x1 = 6x2 = 8x3 hay
Theo tính chất của dãy tỉ số bằng nhau ta có:
Số máy của ba đội theo thứ tự là 6 ; 4 ; 3 (máy )
Theo bài ta có số máy và số ngày của mỗi đội là 2 đại lượng tỉ lệ nghịch nên ta có :
4.x\(_1\)=6.x\(_2\)=8.x\(_3\) và x\(_1\)-x\(_2\)=2
\(\Rightarrow\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}=\dfrac{x_1-x_2}{\dfrac{1}{4}-\dfrac{1}{6}}=\dfrac{2}{\dfrac{1}{12}}=24\)
\(\dfrac{x_1}{\dfrac{1}{4}}=24\Rightarrow x_1=24.\dfrac{1}{4}=6\)
\(\dfrac{x_2}{\dfrac{1}{6}}=24\Rightarrow x_2=24.\dfrac{1}{6}=4\)
\(\dfrac{x_3}{\dfrac{1}{8}}=24\Rightarrow x_3=24.\dfrac{1}{8}=3\)
Vậy : Đội một có 6 máy
Đội hai có 4 máy
Đội ba có 3 máy
Gọi số máy của đội 1 ; 2; 3 lần lượt là a; b; c ( máy) => a - b = 2
Do các máy có cùng năng suất và khối lượng công việc mỗi đội như nhau nên: 4a = 6b = 8c => 24 4a = 24 6b = 24 8c ⇒ 6 a = 4 b = 3 c Áp dụng tính chất dãy tỉ số bằng nhau ta có: 6 a = 4 b = 3 c = 6 − 4 a − b = 2 2 = 1 a/6 = 1 => a = 6 b/4 = 1 => b = 4 c/3 = 1 => c = 3 Vậy số máy đội 1;2;3 lần lượt là: 6;4;3
Gọi x, y, z lần lược là số máy của ba đội thứ I, II, III. theo đề bài , Ta có : x – y = 2 máy. Do cùng năng suất, số máy và ngày hoàn thành tỉ lệ nghịch với nhau nên : 4x = 6y = 8y
Theo tính chất dãy tỉ lệ thức :
x/6=y/4=z/3
=>x = 1.6 = 6 ⇒ y = 1.4 = 4 ⇒ z = 1.3 = 3
Vậy : số máy của ba đội thứ I, II, III lần lược là : 6 máy, 4 máy, 3 máy.
k mình nhá ok :)
doi thu 1 la 6 may
doi thu 2 la 4 may
đội thứ 3 là 3 may
Gọi số máy của 3 đội lần lượt là x, y, z (x, y, z thuộc N*)
Theo đề bài, ta có: z - y = 3
Vì số máy và thời gian làm việc là hai đại lượng tỷ lệ nghịch nên:
\(6x=10y=8z\Rightarrow\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{8}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{8}}=\dfrac{z-y}{\dfrac{1}{8}-\dfrac{1}{10}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó
\(x=120.\dfrac{1}{6}=20\)
\(y=120.\dfrac{1}{10}=12\)
\(z=120.\dfrac{1}{8}=15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{c-b}{15-12}=1\)
Do đó: a=20; b=12; c=15
Gọi số máy ba đội là \(x;y;z\)
Theo đề baì ta có : \(x-y=2\)
Vì các máy có cùng năng suất nên số máy và số ngày hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Do đó ta có \(4x=6y=8z=\frac{x}{4}\)\(=\frac{y}{6}\)\(=\frac{z}{8}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\)\(=\frac{x-y}{4-6}=\frac{2}{12}=24\)
Vậy
\(\hept{\begin{cases}x=6\\y=4\end{cases}}\)
\(z=3\)